油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (4): 403-415.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.001
桑树勋1,2,3(),韩思杰1,2,周效志3,4,刘世奇1,2,王月江5
收稿日期:
2023-05-09
出版日期:
2023-08-26
发布日期:
2023-09-01
作者简介:
桑树勋(1967—),男,博士,二级教授,从事碳中和地质技术、煤系非常规天然气勘探开发、煤系战略性矿产与沉积地质研究。地址:江苏省徐州市泉山区金山东路1号中国矿业大学(文昌校区)碳中和研究院,邮政编码:221008。E-mail:基金资助:
SANG Shuxun1,2,3(),HAN Sijie1,2,ZHOU Xiaozhi3,4,LIU Shiqi1,2,WANG Yuejiang5
Received:
2023-05-09
Online:
2023-08-26
Published:
2023-09-01
摘要:
华东地区深部煤层气勘探开发对保障区域能源需求、优化地区能源结构、实现“双碳”目标具有重要意义。基于系统调研和前期研究积累,总结了华东地区煤层气及瓦斯抽采现状,分析了该地区深部煤层含气特征与资源潜力,探讨了已有深部煤层气勘探开发技术在华东地区的适用性,讨论并预测了华东地区深部煤层气勘探开发潜在有利区,最后提出了华东地区开展深部煤层气勘探开发的优势和挑战。已有研究结果表明:华东地区针对煤矿区及构造煤的煤层气勘探开发技术储备良好,形成了煤矿区煤层气开发“淮南模式”与构造煤煤层气顶板水平井分段压裂开发技术。华东地区深部煤层具有含气量高(大于10 cm3/g)和含气饱和度高(大于80 %)的特征,两淮矿区深部煤层气预测地质资源量占绝大多数,2 000 m以浅高达8 984.69×108 m3,表明两淮地区深部煤层气具备良好的资源优势。深部煤层气的水平井等开发方式及造洞穴应力释放、水力割缝等增产工艺在华东地区具有较大的应用前景,淮南煤田潘谢矿区可作为华东地区深部煤层气勘探开发先导试验区。华东地区深部煤层气工作程度低,需要开展区域性的深部煤层气资源评价与典型地区成藏规律的深入解剖。
中图分类号:
桑树勋,韩思杰,周效志,刘世奇,王月江. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发, 2023, 13(4): 403-415.
SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,LIU Shiqi,WANG Yuejiang. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415.
表1
华东地区代表性煤田或煤矿区主采煤层基本特征"
省 份 | 煤田或 矿区 | 煤层号 | 埋深/m | 厚度/m | 煤级 | 含气量/(m3/t) | 煤体 结构 | 裂隙发育情况 | 镜质组 含量/% | 惰质组 含量/% | 壳质组 含量/% | 水分 含量/% | 挥发分 含量/% | 灰分 含量/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
安 徽 | 潘谢矿区 | 13-1 | 900~1 450 | 1.03~8.26 | 肥煤 | 0.80~18.70 | 碎裂煤 | 发育 | 38.41~88.22 | 7.19~29.78 | 1.03~9.27 | 0.66~1.50 | 29.46~40.04 | 6.23~19.73 |
11-2 | 1 195~1 470 | 0.51~6.37 | 气煤 | 9.66~13.68 | 糜棱煤 | 发育 | 65.83 | 11.82 | 7.47 | 1.82~2.30 | 36.12~38.43 | 21.67~28.19 | ||
张集井田 | 6 | 600~800 | 4.13~6.40 | 气煤 | 8.17 | 碎裂煤 | 发育 | 53.20~66.10 | 12.10~34.80 | 11.90~21.80 | 1.28~1.64 | 37.56~39.49 | 21.38~23.38 | |
丁集矿 | 13-1 | 800~1 000 | 4.13 | 气煤 | 10.55 | 碎裂煤 | 发育 | 68.27 | 17.26 | 14.47 | 0.70~5.19 | 36.33~45.54 | 10.95~32.26 | |
刘庄矿 | 13-1 | 500~1 000 | 0.98~11.07 | 气煤 | 7.34 | 糜棱煤 | 较发育 | 53.69 | 18.48 | 16.62 | 1.98 | 30.00 | 32.13 | |
孙疃矿 | 7 | 550~1 050 | 0~4.46 | 肥煤 | 4.12 | 碎裂煤 | 发育 | 70.49 | 19.67 | 9.77 | 1.08 | 21.89~40.49 | 11.59~39.40 | |
8 | 800 | 0~4.31 | 肥煤 | 12.50 | 碎粒煤 | 发育 | 82.71~87.28 | 10.44 | 3.94 | 1.02~1.33 | 21.48~31.08 | 8.97~41.56 | ||
10 | 220~750 | 0~5.38 | 肥煤 | 11.29 | 碎裂煤 | 较发育 | 65.47~90.82 | 9.20 | 7.61 | 0.69~1.33 | 16.58~31.56 | 5.84~14.36 | ||
江 苏 | 张集矿 | 7 | 488~1 323 | 0~6.11 | 气煤 | 2.08~8.60 | 碎裂煤 | 发育 | 60.60 | 22.60 | 6.10 | 1.75 | 22.13~40.15 | 10.34~25.60 |
垞城矿 | 21 | 632~904 | 0~1.88 | 肥煤 | 1.91~4.69 | 碎裂煤 | 较发育 | 87.00 | 8.00 | 5.00 | 1.02 | 42.70 | 12.14 | |
张小楼矿 | 2 | 391~1 384 | 0.05~12.0 | 气煤 | 0.86~9.2 | 碎裂煤 | 较发育 | 73.00 | 17.00 | 11.00 | 1.13 | 34.77 | 22.96 | |
山 东 | 黄河北煤田 | 13 | 500~2 000 | 0.6~5.0 | 贫煤 | 1.68~5.44 | 碎裂煤 | 发育 | 39.30~82.20 | 5.70~23.90 | 0~9.80 | 0.36~4.62 | 9.07~39.40 | 4.15~45.97 |
济阳坳陷 | 9 | >2 000 | 1.23~5.21 | 贫煤 | >15 | 原生结构煤 | 较发育 | 87.40 | 10.80 | 0.20 | 1.08 | 12.41 | 14.48 | |
11 | >2 000 | 0.34~2.89 | 肥煤 | >10 | 碎裂煤 | 发育 | 78.00 | 17.20 | 3.40 | 2.33 | 39.65 | 3.58 |
[1] | 桑树勋, 刘世奇, 韩思杰, 等. 中国煤炭甲烷管控与减排潜力[J]. 煤田地质与勘探, 2023, 51(1): 159-175. |
SANG Shuxun, LIU Shiqi, HAN Sijie, et al. Coal methane control and its emission reduction potential in China[J]. Coal Geology & Exploration, 2023, 51(1): 159-175. | |
[2] | 安士凯, 徐翀, 陈永春. 淮南矿区卸压煤层气井变形破坏特征研究[J]. 煤炭工程, 2016, 48(10): 88-91. |
AN Shikai, XU Chong, CHEN Yongchun. Deformation and destruction characteristics of released coalbed methane well in Huainan Mine Area[J]. Coal Engineering, 2016, 48(10): 88-91. | |
[3] | 张文永. 安徽省“十三五”期间煤层气勘查开发的战略思考[J]. 中国煤炭地质, 2016, 28(12): 38-42. |
ZHANG Wenyong. Strategic considerations on CBM exploration and exploitation during the 13th five-year plan period in Anhui Province[J]. Coal Geology of China, 2016, 28(12): 38-42. | |
[4] | 叶建平, 侯淞译, 张守仁. “十三五”期间中国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探, 2022, 50(3): 15-22. |
YE Jianping, HOU Songyi, ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th five-year plan period and the next exploration direction[J]. Coal Geology & Exploration, 2022, 50(3): 15-22. | |
[5] |
郑司建, 桑树勋. 煤层气勘探开发研究进展与发展趋势[J]. 石油物探, 2022, 61(6): 951-962.
doi: 10.3969/j.issn.1000-1441.2022.06.001 |
ZHENG Sijian, SANG Shuxun. Progress of research on coalbed methane exploration and development[J]. Geophysical Prospecting for Petroleum, 2022, 61(6): 951-962.
doi: 10.3969/j.issn.1000-1441.2022.06.001 |
|
[6] | 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气成藏模式与关键技术对策——以鄂尔多斯盆地东缘为例[J]. 中国海上油气, 2022, 34(4): 30-42. |
XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep (layer) coalbed methane reservoir forming modes and key technical countermeasures: Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 30-42. | |
[7] | 孙海涛, 舒龙勇, 姜在炳, 等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术, 2022, 50(12): 1-13. |
SUN Haitao, SHU Longyong, JIANG Zaibing, et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology, 2022, 50(12): 1-13. | |
[8] | 黄中伟, 李国富, 杨睿月, 等. 中国煤层气开发技术现状与发展趋势[J]. 煤炭学报, 2022, 47(9): 3212-3238. |
HUANG Zhongwei, LI Guofu, YANG Ruiyue, et al. Review and development trends of coalbed methane exploitation technology in China[J]. Journal of China Coal Society, 2022, 47(9): 3212-3238. | |
[9] | 刘春, 孙贵, 陈伯年, 等. 安徽省煤层气勘查开发进展与发展方向[J]. 安徽地质, 2022, 32(2): 188-192. |
LIU Chun, SUN Gui, CHEN Bonian, et al. Progress and development direction of coalbed methane exploration in Anhui Province[J]. Geology of Anhui, 2022, 32(2): 188-192. | |
[10] | 周德华, 陈刚, 陈贞龙, 等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业, 2022, 42(6): 43-51. |
ZHOU Dehua, CHEN Gang, CHEN Zhenlong, et al. Exploration and development progress, key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry, 2022, 42(6): 43-51. | |
[11] |
秦勇, 申建. 论深部煤层气基本地质问题[J]. 石油学报, 2016, 37(1): 125-136.
doi: 10.7623/syxb201601013 |
QIN Yong, SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica, 2016, 37(1): 125-136.
doi: 10.7623/syxb201601013 |
|
[12] | 孔祥喜, 唐永志, 李平, 等. 淮南矿区松软低透煤层煤层气开发利用技术与思考[J]. 煤炭科学技术, 2022, 50(12): 26-35. |
KONG Xiangxi, TANG Yongzhi, LI Ping, et al. Thinking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area[J]. Coal Science and Technology, 2022, 50(12): 26-35. | |
[13] | 桑树勋, 周效志, 刘世奇, 等. 应力释放构造煤煤层气开发理论与关键技术研究进展[J]. 煤炭学报, 2020, 45(7): 2531-2543. |
SANG Shuxun, ZHOU Xiaozhi, LIU Shiqi, et al. Research advances in theory and technology of the stress release applied extraction of coalbed methane from tectonically deformed coals[J]. Journal of China Coal Society, 2020, 45(7): 2531-2543. | |
[14] | 张永将, 邹全乐, 杨慧明, 等. 突出煤层群井上下联合抽采防突模式与关键技术[J/OL]. 煤炭学报: 1-16(2023-06-14)[2023-07-18]. https://doi.org/10.13225/j.cnki.jccs.S022.1663. |
ZHANG Yongjiang, ZOU Quanle, YANG Huiming, et al. Outburst coal seam group joint ground and underground gas extraction mode and its key technology[J/OL]. Journal of China Coal Society: 1-16(2023-06-14)[2023-07-18]. https://doi.org/10.13225/j.cnki.jccs.S022.1663. | |
[15] | 李国富, 张遂安, 季长江, 等. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系[J]. 煤炭科学技术, 2022, 50(12): 14-25. |
LI Guofu, ZHANG Sui'an, JI Changjiang, et al. Mechanism and technical system of ground and underground combined drainage of CBM in “four region linkage” in coal mining area[J]. Coal Science and Technology, 2022, 50(12): 14-25. | |
[16] | 张群, 降文萍, 姜在炳. 等. 我国煤矿区煤层气地面开发现状及技术研究进展[J]. 煤田地质与勘探, 2023, 51(1): 139-158. |
ZHANG Qun, JIANG Wenping, JIANG Zaibing, et al. Present situation and technical research progress of coalbed methane surface development in coal mining areas of China[J]. Coal Geology & Exploration, 2023, 51(1): 139-158. | |
[17] | 窦新钊, 朱文伟, 俞显忠, 等. 安徽两淮地区煤层气勘探开发现状及建议[J]. 安徽地质, 2015, 25(2): 115-118. |
DOU Xinzhao, ZHU Wenwei, YU Xianzhong, et al. Exploration and development status of coalbed gas in the Lianghuai Area and suggestions[J]. Geology of Anhui, 2015, 25(2): 115-118. | |
[18] | 童碧, 许超, 刘飞, 等. 淮南矿区瓦斯抽采中以孔代巷技术研究与工程实践[J]. 煤炭科学技术, 2018, 46(4): 33-39. |
TONG Bi, XU Chao, LIU Fei, et al. Technology research on borehole in place of roadway and its engineering practice in gas drainage of Huainan Mining Area[J]. Coal Science and Technology, 2018, 46(4): 33-39. | |
[19] | 夏仕方. 采动区地面钻井技术在淮南矿区煤层气抽采中的应用[J]. 建井技术, 2020, 41(2): 48-52. |
XIA Shifang. Surface drilling technology in mining area applied to coal bed methane drainage in Huainan Mining Area[J]. Mine Construction Technology, 2020, 41(2): 48-52. | |
[20] | 张群, 葛春贵, 李伟, 等. 碎软低渗煤层顶板水平井分段压裂煤层气高效抽采模式[J]. 煤炭学报, 2018, 43(1): 150-159. |
ZHANG Qun, GE Chungui, LI Wei, et al. A new model and application of coalbed methane high efficiency production from broken soft and low permeable coal seam by roof strata-in horizontal well and staged hydraulic fracture[J]. Journal of China Coal Society, 2018, 43(1): 150-159. | |
[21] |
HAN S J, SANG S X, ZHOU P M, et al. The evolutionary history of methane adsorption capacity with reference to deep Carboniferous-Permian coal seams in the Jiyang Sub-basin: Combined implementation of basin modeling and adsorption isotherm experiments[J]. Journal of Petroleum Science and Engineering, 2017, 158: 634-646.
doi: 10.1016/j.petrol.2017.09.007 |
[22] | 高锡擎. 淮南谢家集矿区煤层气地质特征研究[D]. 淮南: 安徽理工大学, 2012. |
GAO Xiqing. Study on the characteristics of coal-bed methane geology in Huainan Xiejiaji Mining Area[D]. Huainan: Anhui University of Science & Technology, 2012. | |
[23] | 王文峰, 宋志敏, 秦勇. 淮北宿县矿区煤层气地质评价[J]. 煤田地质与勘探, 2002, 30(3): 29-33. |
WANG Wenfeng, SONG Zhimin, QIN Yong. Geological evaluation of coalbed gas in Suxian coal mining area, northern Anhui[J]. Coal Geology & Exploration, 2002, 30(3): 29-33. | |
[24] | 邢雪. 徐州矿区深部煤层气开发潜力评价[D]. 徐州: 中国矿业大学, 2014. |
XING Xue. Development potential evaluation of deep CBM resources in Xuzhou Mining Area[D]. Xuzhou: China University of Mining & Technology, 2014. | |
[25] | 罗怡鑫, 李莹, 王怀洪, 等. 黄河北煤田10号煤煤层气储层物性及特征研究[J]. 中国煤炭地质, 2021, 33(1): 26-30. |
LUO Yixin, LI Ying, WANG Huaihong, et al. Study on Coal No. 10 CBM reservoir physical property and characteristics in Huanghebei Coalfield[J]. Coal Geology of China, 2021, 33(1): 26-30. | |
[26] | 平立华, 孟运平, 潘树仁, 等. 江苏省煤炭资源现状及开发利用建议[J]. 沉积与特提斯地质, 2015, 35(1): 109-112. |
PING Lihua, MENG Yunping, PAN Shuren, et al. Current states and proposals for the exploitation and utilization of the coal resources in Jiangsu[J]. Sedimentary Geology and Tethyan Geology, 2015, 35(1): 109-112. | |
[27] | 胡广青, 易小会. 两淮煤田煤储层含气特征及影响因素分析[J]. 西部资源, 2019, 16(6): 42-43. |
HU Guangqing, YI Xiaohui. Analysis of gas-bearing characteristics and influencing factors of coal reservoirs in Lianghuai coalfield[J]. Western Resources, 2019, 16(6): 42-43. | |
[28] |
LIU D M, YAO Y B, TANG D Z, et al. Coal reservoir characteristics and coalbed methane resource assessment in Huainan and Huaibei coalfields, Southern North China[J]. International Journal of Coal Geology, 2009, 79(3): 97-112.
doi: 10.1016/j.coal.2009.05.001 |
[29] | 赵干, 廖斌琛. 淮南矿区煤层气开发利用现状及展望[J]. 中国煤层气, 2007, 14(4): 12-15. |
ZHAO Gan, LIAO Binchen. Current status and prospect of CMM development and utilization in Huainan Coal Mining Area[J]. China Coalbed Methane, 2007, 14(4): 12-15. | |
[30] | 廖家隆. 徐州地区煤层气勘探地质条件及选区评价[J]. 中国煤炭地质, 2016, 28(2): 16-21. |
LIAO Jialong. CBM exploration geological conditions and target assessment in Xuzhou Area[J]. Coal Geology in China, 2016, 28(2): 16-21. | |
[31] | 宋孝忠. 黄河北煤田赵官井田煤层瓦斯赋存规律及主控因素[J]. 煤田地质与勘探, 2019, 47(1): 73-77. |
SONG Xiaozhong. Storage rule and controlling factors of coalbed gas in Zhaoguan mine field of Huanghebei coalfield[J]. Coal Geology & Exploration, 2019, 47(1): 73-77. | |
[32] | 路长勇, 王怀洪, 孔凡顺, 等. 黄河北煤田太原组13煤煤层气主控地质因素分析[J]. 中国煤炭地质, 2020, 32(12): 61-67. |
LU Changyong, WANG Huaihong, KONG Fanshun, et al. Analysis of Taiyuan Formation Coal No.13 CBM main control geological factors in Huanghebei Coalfield[J]. Coal Geology in China, 2020, 32(12): 61-67. | |
[33] | 秦勇, 宋全友, 傅雪海. 煤层气与常规油气共采可行性探讨——深部煤储层平衡水条件下的吸附效应[J]. 天然气地球科学, 2005, 16(4): 492-498. |
QIN Yong, SONG Quanyou, FU Xuehai. Discussion on reliability for co-mining the coalbed gas and normal petroleum and natural gas: Absorptive effect of deep coal reservoir under condition of balanced water[J]. Natural Gas Geoscience, 2005, 16(4): 492-498. | |
[34] | 陈贞龙, 郭涛, 李鑫, 等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术, 2019, 47(9): 112-118. |
CHEN Zhenlong, GUO Tao, LI Xin, et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology, 2019, 47(9): 112-118. | |
[35] | 姚红生, 肖翠, 陈贞龙, 等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发, 2022, 12(4): 545-555. |
YAO Hongsheng, XIAO Cui, CHEN Zhenlong, et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 545-555. | |
[36] | 陈刚, 秦勇, 胡宗全, 等. 准噶尔盆地白家海凸起深部含煤层气系统储层组合特征[J]. 煤炭学报, 2016, 41(1): 80-86. |
CHEN Gang, QIN Yong, HU Zongquan, et al. Characteristics of reservoir assemblage of deep CBM-bearing system in Baijiahai dome of Junggar Basin[J]. Journal of China Coal Society, 2016, 41(1): 80-86. | |
[37] | 李辛子, 王运海, 姜昭琛, 等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报, 2016, 41(1): 24-31. |
LI Xinzi, WANG Yunhai, JIANG Zhaochen, et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society, 2016, 41(1): 24-31. | |
[38] | 申鹏磊, 吕帅锋, 李贵山, 等. 深部煤层气水平井水力压裂技术——以沁水盆地长治北地区为例[J]. 煤炭学报, 2021, 46(8): 2488-2500. |
SHEN Penglei, LYU Shuaifeng, LI Guishan, et al. Hydraulic fracturing technology for deep coalbed methane horizontal wells: A case study in North Changzhi area of Qinshui Basin[J]. Journal of China Coal Society, 2021, 46(8): 2488-2500. | |
[39] | 付玉通. 延川南深部煤层气地质特征与水平井开发技术地质适配性研究[D]. 徐州: 中国矿业大学, 2018. |
FU Yutong. Study on geological characteristics of the deep CBM and adaptability of horizontal well development techniques with them in the Southern Yanchuan block[D]. Xuzhou: China University of Mining & Technology, 2018. | |
[40] | 王青川, 金国辉, 王琪. 浅析煤体结构对压裂的影响[J]. 中国煤层气, 2017, 14(5): 8-10. |
WANG Qingchuan, JIN Guohui, WANG Qi. Elementary analysis of the effect of coal structure on fracturing results[J]. China Coalbed Methane, 2017, 14(5): 8-10. | |
[41] | 李雪娇, 陈帅, 甄怀宾, 等. 碎软煤层夹矸间接压裂开发煤层气技术研究[J]. 钻采工艺, 2022, 45(5): 69-74. |
LI Xuejiao, CHEN Shuai, ZHEN Huaibin, et al. Study on indirect fracturing technology for CBM development in the parting of broken soft coal seams[J]. Drilling & Production Technology, 2022, 45(5): 69-74. | |
[42] | 李洋阳, 杨兆彪, 孙晗森, 等. 黔西滇东区块储层物性制约下煤层气开发潜力评价[J]. 煤炭科学技术, 2018, 46(8): 164-171. |
LI Yangyang, YANG Zhaobiao, SUN Hansen, et al. Evaluation on development potential of coalbed methane under physical property restriction of reservoir in West Guizhou and East Yunnan Block[J]. Coal Science and Technology, 2018, 46(8): 164-171. | |
[43] |
WEI Q, LI X, HU B, et al. Reservoir characteristics and coalbed methane resource evaluation of deep-buried coals: A case study of the No. 13-1 coal seam from the Panji Deep Area in Huainan Coalfield, Southern North China[J]. Journal of Petroleum Science and Engineering, 2019, 179: 867-884.
doi: 10.1016/j.petrol.2019.04.100 |
[44] | 沈雨浩. 淮南矿区潘集深部13-1煤煤层气资源潜力评价[D]. 淮南: 安徽理工大学, 2017. |
SHEN Yuhao. Evaluation on CBM resource potential of 13-1 Coal in Panji Deep Coal Mine[D]. Huai’nan: Anhui University of Science & Technology, 2017. |
[1] | 姚红生,肖翠,陈贞龙,郭涛,李鑫. 延川南深部煤层气高效开发调整对策研究 [J]. 油气藏评价与开发, 2022, 12(4): 545-555. |
[2] | 李浩涵,包书景,张焱林,段轲,陈科,周志,宋腾,李飞. 鄂西地区下震旦统陡山沱组二段剖面特征及页岩气地质意义 [J]. 油气藏评价与开发, 2022, 12(1): 171-180. |
[3] | 姚红生,陈贞龙,郭涛,李鑫,肖翠,解飞. 延川南深部煤层气地质工程一体化压裂增产实践 [J]. 油气藏评价与开发, 2021, 11(3): 291-296. |
[4] | 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策 [J]. 油气藏评价与开发, 2020, 10(4): 1-11. |
|