油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (2): 247-255.doi: 10.13809/j.cnki.cn32-1825/te.2024.02.010
收稿日期:
2023-10-07
发布日期:
2024-05-07
出版日期:
2024-04-26
通讯作者:
梁利喜
E-mail:swpuzhangwen@qq.com;lianglixi@swpu.edu.cn
作者简介:
张文(1993—),男,在读博士研究生,主要从事石油工程岩石力学相关研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: 基金资助:
ZHANG Wen(),LIANG Lixi(),LIU Xiangjun,XIONG Jian,ZHANG Yinan
Received:
2023-10-07
Online:
2024-05-07
Published:
2024-04-26
Contact:
LIANG Lixi
E-mail:swpuzhangwen@qq.com;lianglixi@swpu.edu.cn
摘要:
碳酸盐岩在化学和力学作用下结构及力学特征是该类储层酸压技术有效性评价的重要研究课题。以海相碳酸盐岩为研究对象,开展了20%HCl胶凝酸对碳酸盐岩结构和力学性能影响的室内实验研究。基于矿物组成,将碳酸盐岩划分为灰岩、含云质灰岩、含灰质云岩和云岩4种类型,相对于灰岩的均匀刻蚀,酸在含云质灰岩表面选择性刻蚀,形成蚓蚀刻槽,而含灰质云岩和云岩则以点状刻蚀和沿着结构面侵蚀为主。酸作用前碳酸盐岩具有基质强度主导的剪切破坏特征,而酸作用后改变了岩石内部结构,导致碳酸盐岩更易在拉张应力作用下发生破坏,更容易劈裂破坏或沿结构面破坏。酸作用后碳酸盐岩的宏观强度降幅远大于基质强度降幅,酸液通过侵入岩石内部,在岩石内部形成更多微观缺陷,表现为峰值应力时弹性能占比降低和耗散能占比增加,因此其宏观力学性能劣化是基质强度劣化和内部结构改变共同作用的结果。研究结论对于碳酸盐岩现场酸压实践以及后续生产方案制定提供一定指导。
中图分类号:
Wen ZHANG,Lixi LIANG,Xiangjun LIU, et al. Etching morphology and mechanical properties of carbonate rocks under acid action[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 247-255.
表1
碳酸盐岩样品XRD衍射测试结果"
样品编号 | 相对含量/% | 岩性 | 结构描述 | ||
---|---|---|---|---|---|
方解石 | 白云石 | 泥质 | |||
C1 | 99.25 | 0 | 0.75 | 灰岩 | 可见充填矿脉 |
C2 | 95.44 | 3.77 | 0.79 | 含云质灰岩 | 含大量充填矿脉 |
C3 | 88.22 | 10.98 | 0.80 | 含云质灰岩 | 可见充填矿脉 |
C4 | 74.08 | 25.23 | 0.69 | 含云质灰岩 | 无明显的结构发育 |
C5 | 20.26 | 79.01 | 0.73 | 含灰质云岩 | 含大量充填裂缝,矿物颗粒呈微粉晶状 |
C6 | 16.41 | 82.98 | 0.61 | 含灰质云岩 | 无明显的结构发育 |
C7 | 1.78 | 97.06 | 1.16 | 云岩 | 生物藻类充填的裂缝发育,裂缝开度可达2 mm |
表2
酸化前后碳酸盐岩样品在峰值应力时的能量参数"
编号 | 岩石类型 | 样品处理 | 破坏应变 | 总能/ (MJ/m3) | 弹性能/ (MJ/m3) | 耗散能/ (MJ/m3) | 弹性能占比/ % | 耗散能占比/ % |
---|---|---|---|---|---|---|---|---|
C1 | 灰岩 | 酸化前 | 0.003 56 | 0.238 | 0.220 | 0.018 | 92.34 | 7.66 |
C2 | 含云质灰岩 | 酸化前 | 0.003 49 | 0.156 | 0.126 | 0.031 | 80.29 | 19.71 |
C3 | 含云质灰岩 | 酸化前 | 0.003 84 | 0.265 | 0.234 | 0.031 | 88.37 | 11.63 |
C4 | 含云质灰岩 | 酸化前 | 0.004 10 | 0.268 | 0.248 | 0.020 | 92.65 | 7.35 |
C5 | 含灰质云岩 | 酸化前 | 0.002 89 | 0.160 | 0.144 | 0.016 | 90.03 | 9.97 |
C6 | 含灰质云岩 | 酸化前 | 0.003 73 | 0.265 | 0.231 | 0.033 | 87.35 | 12.65 |
C7 | 云岩 | 酸化前 | 0.003 60 | 0.223 | 0.204 | 0.019 | 91.52 | 8.48 |
C1 | 灰岩 | 酸化后 | 0.003 48 | 0.166 | 0.112 | 0.055 | 67.15 | 32.85 |
C2 | 含云质灰岩 | 酸化后 | 0.005 95 | 0.197 | 0.161 | 0.036 | 81.69 | 18.31 |
C3 | 含云质灰岩 | 酸化后 | 0.005 77 | 0.255 | 0.216 | 0.039 | 84.67 | 15.33 |
C4 | 含云质灰岩 | 酸化后 | 0.004 99 | 0.092 | 0.075 | 0.017 | 81.77 | 18.23 |
C5 | 含灰质云岩 | 酸化后 | 0.003 18 | 0.117 | 0.073 | 0.045 | 61.78 | 38.22 |
C6 | 含灰质云岩 | 酸化后 | 0.003 72 | 0.171 | 0.128 | 0.043 | 74.91 | 25.09 |
C7 | 云岩 | 酸化后 | 0.004 05 | 0.257 | 0.165 | 0.092 | 64.09 | 35.91 |
[1] | 王永辉, 李永平, 程兴生, 等. 高温深层碳酸盐岩储层酸化压裂改造技术[J]. 石油学报, 2012, 33(增刊2): 166-173. |
WANG Yonghui, LI Yongping, CHENG Xingsheng, et al. A new acid fracturing technique for carbonate reservoirs with high-temperature and deep layer[J]. Acta Petrolei Sinica, 2012, 33(suppl. 2): 166-173. | |
[2] | 倪新锋, 沈安江, 乔占峰, 等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158. |
NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs, 2023, 35(2): 144-158. | |
[3] | 何文渊, 云建兵, 钟建华. 川东北二叠系长兴组碳酸盐岩云化成储机制[J]. 岩性油气藏, 2022, 34(5): 1-25. |
HE Wenyuan, YUN Jianbing, ZHONG Jianhua. Reservoir-forming mechanism of carbonate dolomitization of Permian Changxing Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(5): 1-25. | |
[4] | 赵宗举, 范国章, 吴兴宁, 等. 中国海相碳酸盐岩的储层类型、勘探领域及勘探战略[J]. 海相油气地质, 2007, 12(1): 1-11. |
ZHAO Zongju, FAN Guozhang, WU Xingning, et al. Reservoir types, exploration domains and exploration strategy of marine carbonates in China[J]. Marine Origin Petroleum Geology, 2007, 12(1): 1-11. | |
[5] | 崔俊, 毛建英, 陈登钱, 等. 柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J]. 岩性油气藏, 2022, 34(2): 45-53. |
CUI Jun, MAO Jianying, CHEN Dengqian, et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2022, 34(2): 45-53. | |
[6] | 黄腾达, 纪成, 赵兵, 等. 超深碳酸盐岩储层岩石三轴压缩实验与数值模拟研究[J]. 断块油气田, 2024, 31(1): 134-139. |
HUANG Tengda, JI Cheng, ZHAO Bing, et al. Triaxial compression experiment of rocks and numerical simulation in ultra-deep carbonate reservoir[J]. Fault-block Oil&Gas Field, 2024, 31(1): 134-139. | |
[7] | 孙斌, 张培先, 高全芳, 等. 川东南南川地区茅口组一段碳酸盐岩储层特征及富集模式[J]. 非常规油气, 2022, 9(3): 21-31. |
SUN Bin, ZHANG Peixian, GAO Quanfang, et al. Reservoir properties and accumulation mode of carbonate rocks in Mao1 Member of Nanchuan Area in southeast Sichuan[J]. Unconventional Oil & Gas, 2022, 9(3): 21-31. | |
[8] | 张建利, 孙忠杰, 张泽兰. 碳酸盐岩油藏酸岩反应动力学实验研究[J]. 油田化学, 2003, 20(3): 216-219. |
ZHANG Jianli, SUN Zhongjie, ZHANG Zelan. An experimental study on acid/rock reaction dynamics for carbonatestone reservoir cores[J]. Oilfield Chemistry, 2003, 20(3): 216-219. | |
[9] |
HYUNSANG Y, YOUNGMIN K, WONSUK L, et al. An experimental study on acid-rock reaction kinetics using dolomite in carbonate acidizing[J]. Journal of Petroleum Science and Engineering, 2018, 168: 478-494.
doi: 10.1016/j.petrol.2018.05.041 |
[10] | 任永琳, 王达, 冯浦涌, 等. 碳酸盐岩储层机械转向酸化酸压技术最新研究进展[J]. 非常规油气, 2022, 9(5): 1-8. |
REN Yonglin, WANG Da, FENG Puyong, et al. Latest research progress of carbonate formation mechanical diversion stimulation technology[J]. Unconventional Oil & Gas, 2022, 9(5): 1-8. | |
[11] | 李小刚, 杨兆中, 苏建政, 等. 酸压过程中多尺度酸岩反应特征实验研究[J]. 石油实验地质, 2010, 32(5): 504-508. |
LI Xiaogang, YANG Zhaozhong, SU Jianzheng, et al. Experimental study of multi-scale reaction between acid and rock in acid fracturing[J]. Petroleum Geology and Experiment, 2010, 32(5): 504-508. | |
[12] | 刘超, 苟波, 管晨呈, 等. 关井效应对酸压裂缝刻蚀形貌与导流能力影响[J]. 中国石油大学学报(自然科学版), 2021, 45(2): 96-103. |
LIU Chao, GOU Bo, GUAN Chencheng, et al. Effect of well shut-in on acid etching morphology and conductivity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(2): 96-103. | |
[13] | 薛衡, 黄祖熹, 赵立强, 等. 考虑岩矿非均质性的前置液酸压模拟研究[J]. 天然气工业, 2018, 38(2): 59-66. |
XUE Heng, HUANG Zuxi, Zhao Liqiang, et al. A simulation study on the preflush acid fracturing considering rock heterogeneity[J]. Natural Gas Industry, 2018, 38(2): 59-66. | |
[14] | BUJISE M A. Understanding wormholing mechanisms can improve acid treatments in carbonate formations[J]. SPE Production & Operations, 2000, 15(3): 168-175. |
[15] | 平恩顺, 张明晰, 王瑞泓, 等. 跨采油树不动管柱酸压增注技术研究[J]. 钻采工艺, 2023, 46(2): 122-125. |
PING Enshun, ZHANG Mingxi, WANG Ruihong, et al. Development and application of christmas tree protection device for immobile string acidizing[J]. Drilling & Production Technology, 2023, 46(2): 122-125. | |
[16] | 宋周成, 段永贤, 何思龙, 等. 富满油田超深碳酸盐岩酸压液体体系优化组合及应用[J]. 钻采工艺, 2023, 46(2): 139-145. |
SONG Zhoucheng, DUAN Yongxian, HE Silong, et al. Combination of acid fracturing fluid system for ultra-deep carbonate reservoir in Fuman Oilfield and its application[J]. Drilling & Production Technology, 2023, 46(2): 139-145. | |
[17] | 龚蔚. 深层裂缝型碳酸盐岩油藏水平井水力喷射酸压技术[J]. 断块油气田, 2020, 27(6): 808-811. |
GONG Wei. Hydrajet acid fracturing technique of horizontal well in deep fractured carbonate reservoir[J]. Fault-Block Oil and Gas Field, 2020, 27(6): 808-811. | |
[18] | 周健, 陈勉, 金衍, 等. 压裂酸化中近缝区灰岩强度弱化效应试验研究[J]. 岩石力学与工程学报, 2007, 26(1): 206-210. |
ZHOU Jian, CHEN Mian, JIN Yan, et al. Experimental study on strength reduction effects of limestone near fracture area during acid fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1): 206-210. | |
[19] |
ZHANG H, ZHONG Y, ZHANG J, et al. Experimental research on deterioration of mechanical properties of carbonate rocks under acidified conditions[J]. Journal of Petroleum Science and Engineering, 2020, 185: 106612.
doi: 10.1016/j.petrol.2019.106612 |
[20] | 何春明, 郭建春. 酸液对灰岩力学性质影响的机制研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3016-3021. |
HE Chunming, GUO Jianchun. Mechanism study of acid on mechanical properties of limestone[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(suppl. 2): 3016-3021. | |
[21] | 陈红军, 刘超, 付珍, 等. 碳酸盐岩储层酸处理降低破裂压力研究综述[J]. 石油与天然气化工, 2010, 39(4): 339-343. |
CHEN Hongjun, LIU Chao, FU Zhen, et al. The survey on the acid-treatment lowering break-down pressure of carbonate rock reservoir[J]. Chemical Engineering of Oil and Gas, 2010, 39(4): 339-343. | |
[22] |
GUO Y T, HOU L F, YAO Y M, et al. Experimental study on influencing factors of fracture propagation in fractured carbonate rocks[J]. Journal of Structural Geology, 2019, 131: 103955.
doi: 10.1016/j.jsg.2019.103955 |
[23] | 刘向君, 徐晓雷, 刘洪, 等. 酸对灰岩地层井壁稳定性及临界压差的影响研究[J]. 钻采工艺, 2007, 30(4): 112-115. |
LIU Xiangjun, XU Xiaolei, LIU Hong, et al. Effects of acid on borehole face stability and critical producing pressure difference in limestone formation[J]. Drilling & Production Technology, 2007, 30(4): 112-115. | |
[24] | 刘再华, DREYBRODT W, 李华举. 灰岩和白云岩溶解速率控制机理的比较[J]. 地球科学, 2006, 31(3): 411-416. |
LIU Zaihua, DREYBRODT W, LI Huaju. Comparison of dissolution rate-determining mechanisms between limestone and dolomite[J]. Earth Science-Journal of China University of Geosciences, 2006, 31(3): 411-416. | |
[25] |
ANDRIAMIHAJA Spariharijaona, PADMANABHAN Eswaran, BEN-AWUAH Joel, 等. 静态条件下碳酸盐岩三维孔隙网络的溶蚀改造及其对孔隙结构的影响[J]. 石油勘探与开发, 2019, 46(2): 361-369.
doi: 10.11698/PED.2019.02.16 |
ANDRIAMIHAJA Spariharijaona, PADMANABHAN Eswaran, BEN-AWUAH Joel, et al. Static dissolution-induced 3D pore network modification and its impact on critical pore attributes of carbonate rocks[J]. Petroleum Exploitation and Development, 2019, 46(2): 361-369.
doi: 10.11698/PED.2019.02.16 |
|
[26] | 李新勇, 吴恒川, 房好青, 等. 微观结构差异对碳酸盐岩酸蚀损伤的影响[J]. 新疆石油地质, 2021, 42(2): 188-193. |
LI Xinyong, WU Hengchuan, FANG Haoqing, et al. Influences of microstructural differences on acid corrosive damage to carbonate rocks[J]. Xinjiang Petroleum Geology, 2021, 42(2): 188-193. | |
[27] | 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. |
XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. | |
[28] | 张文, 刘向君, 梁利喜, 等. 致密砂岩地层气体钻井井眼稳定性试验研究[J]. 石油钻探技术, 2023, 51(2): 37-45. |
ZHANG Wen, LIU Xiangjun, LIANG Lixi, et al. Test research on tight sandstone wellbore stability during gas drilling[J]. Petroleum Drilling Techniques, 2023, 51(2): 37-45 | |
[29] | 申鑫, 郭建春, 王世彬. 阳离子表面活性剂遮蔽作用导致的酸化缓速研究[J]. 油气藏评价与开发, 2023, 13(1): 117-126. |
SHEN Xin, GUO Jianchun, WANG Shibin. Acidification retardation caused by shielding of cationic surfactants[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 117-126. | |
[30] | 华青, 王昱珩, 张娜, 等. 碳酸盐岩酸蚀蚓孔影响因素模拟分析研究[J]. 石油地质与工程, 2023, 37(6): 97-102. |
HUA Qing, WANG Yuheng, ZHANG Na, et al. Simulation analysis of influencing factors of carbonate acidizing wormholes[J]. Petroleum Geology & Engineering, 2023, 37(6): 97-102. | |
[31] | 史亚红, 陈文安, 李纲, 等. 风西混积碳酸盐岩储层测井流体识别及定量评价[J]. 石油地质与工程, 2023, 37(5): 10-16. |
SHI Yahong, CHEN Wen’an, LI Gang, et al. Logging fluid identification and quantitative evaluation of mixed carbonate reservoir in Fengxi area[J]. Petroleum Geology & Engineering, 2023, 37(5): 10-16. | |
[32] | 郭凯, 范乐元, 金树堂, 等. 滨里海盆地东缘石炭系碳酸盐岩台缘带识别及展布特征[J]. 石油地质与工程, 2023, 37(3): 23-30. |
GUO Kai, FAN Leyuan, JIN Shutang, et al. Identification of Carboniferous carbonate platform margin and its distribution characteristics in the eastern margin of the Pre-Caspian Basin[J]. Petroleum Geology & Engineering, 2023, 37(3): 23-30. |
[1] | 胡文革, 马龙杰, 汪彦, 鲍典, 张云. 关于塔里木盆地深层油气藏高效开发的实践与思考 [J]. 油气藏评价与开发, 2024, 14(4): 519-528. |
[2] | 陈祥, 王冠, 刘平礼, 杜娟, 王铭, 陈伟华, 李金龙, 刘金明, 刘飞. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究 [J]. 油气藏评价与开发, 2024, 14(4): 569-576. |
[3] | 闵超,李映君,李小刚,华青,张娜. 直觉模糊MABAC法在低渗碳酸盐岩气藏有利区优选中的应用 [J]. 油气藏评价与开发, 2024, 14(4): 577-585. |
[4] | 闫建丽,李超,马栋,李卓,王鹏. 渤海复杂潜山油藏动静态特征识别方法及应用 [J]. 油气藏评价与开发, 2024, 14(2): 308-316. |
[5] | 李颖, 马寒松, 李海涛, GANZER Leonhard, 唐政, 李可, 罗红文. 超临界CO2对碳酸盐岩储层的溶蚀作用研究 [J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
[6] | 申鑫,郭建春,王世彬. 阳离子表面活性剂遮蔽作用导致的酸化缓速研究 [J]. 油气藏评价与开发, 2023, 13(1): 117-126. |
[7] | 付天宇,刘启国,岑雪芳,李隆新,彭先. 碳酸盐岩三重介质气藏NPI产量递减分析研究 [J]. 油气藏评价与开发, 2021, 11(6): 905-910. |
[8] | 区舫,杨辉廷,黄晓兵. X气田飞仙关组礁滩相储层测井解释方法应用 [J]. 油气藏评价与开发, 2021, 11(5): 744-752. |
[9] | 赵培荣. 焦石坝地区茅一段储层特征及天然气勘探潜力 [J]. 油气藏评价与开发, 2021, 11(5): 772-781. |
[10] | 李昌,沈安江,常少英,梁正中,李振林,孟贺. 机器学习法在碳酸盐岩岩相测井识别中应用及对比——以四川盆地MX地区龙王庙组地层为例 [J]. 油气藏评价与开发, 2021, 11(4): 586-596. |
[11] | 陈明江,刘俊海,程亮. 强纵向非均质性油藏油水层识别及油水界面精细刻画 [J]. 油气藏评价与开发, 2021, 11(3): 428-436. |
[12] | 孙焕泉,周德华,赵培荣,李王鹏,冯动军,高波. 中国石化地质工程一体化发展方向 [J]. 油气藏评价与开发, 2021, 11(3): 269-280. |
[13] | 夏海帮,包凯,王睿,熊炜. 南川区块茅口组泥灰岩胶凝酸酸压试验 [J]. 油气藏评价与开发, 2021, 11(2): 235-240. |
[14] | 夏威,蔡潇,丁安徐,李辉. 南川地区栖霞—茅口组碳酸盐岩储集空间研究 [J]. 油气藏评价与开发, 2021, 11(2): 197-203. |
[15] | 雷林,张龙胜,熊炜. 渝东南地区茅口组气藏大石1HF井酸压工艺技术研究 [J]. 油气藏评价与开发, 2020, 10(5): 84-90. |
|