[1] |
黄迎松. 用于高耗水层带判别的干扰试井方法[J]. 石油钻采工艺, 2019, 41(6): 749-755.
|
|
HUANG Yingsong. An interference well test method for the identification of high-consumption water zone[J]. Oil Drilling and Production Technology, 2019, 41(6): 749-755.
|
[2] |
刘丽杰. 胜坨油田特高含水后期矢量开发调整模式及应用[J]. 油气地质与采收率, 2016, 23(3): 111-115.
|
|
LIU Lijie. Vector development adjustment modes and its application in late extra-high water cut stage of Shengtuo oilfield[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 111-115.
|
[3] |
刘丽杰, 张先敏, 魏祥祥, 等. 特高含水期剩余油分类评价方法[J]. 油气地质与采收率, 2022, 29(5): 83-90.
|
|
LIU Lijie, ZHANG Xianmin, WEI Xiangxiang, et al. Classification and evaluation method of remaining oil in ultra-high water cut stage[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 83-90.
|
[4] |
LI S S, FENG Q H, ZHANG X M, et al. A new water flooding characteristic curve at ultra-high water cut stage[J]. Journal of Petroleum Exploration and Production Technology, 2023, 13(1): 101-110.
doi: 10.1007/s13202-022-01538-6
|
[5] |
CHEN G S MENG Y L, HUAN J L, et al. Distribution and origin of anomalously high permeability zones in Weizhou formation, Weizhou 12-X oilfield, Weixinan Sag, China[J]. Earth Science Informatics, 2021, 14(4): 2003-2015.
doi: 10.1007/s12145-021-00670-x
|
[6] |
杨勇. 正韵律厚油层优势渗流通道的形成条件和时机[J]. 油气地质与采收率, 2008, 15(3): 105-107.
|
|
YANG Yong. Forming condition and opportunity of preponderant flowing channel in thick positive rhythm reservoir[J]. Petroleum Geology and Recovery Efficiency, 2008, 15(3): 105-107.
|
[7] |
韩智颖, 张玉晓, 黄尚军, 等. 高效流场调整技术在整装油藏特高含水期的应用[J]. 油气地球物理, 2020, 18(1): 66-71.
|
|
HAN Zhiying, ZHANG Yuxiao, HUANG Shangjun, et al. Application of high efficiency flow field adjustment technology in the ultra-high water cut stage of uncompartmentalized reservoir[J]. Petroleum Geophysics, 2020, 18(1): 66-71.
|
[8] |
于秀玲. 高含水油藏基于流场调整的井网及注采优化设计[D]. 青岛: 中国石油大学(华东), 2017.
|
|
YU Xiuling. Optimization of well pattern and injection-production based on flow field adjustment in high water-cut reservoirs[D]. Qingdao: China University of Petroleum(East China), 2017.
|
[9] |
柏明星, 张志超, 梁健巍. 中高渗透砂岩油田优势流场识别与调整[J]. 油气地质与采收率, 2017, 24(1): 100-105.
|
|
BAI Mingxing, ZHANG Zhichao, LIANG Jianwei. Identification and adjustment of streamline field in middle-high permeability sandstone oilfield[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 100-105.
|
[10] |
李林祥, 谭河清, 马建波, 等. 二元复合驱后油藏流场调整提高采收率技术——以孤东油田六区Ng54-Ng68单元为例[J]. 长江大学学报(自然科学版), 2019, 16(12): 31-36.
|
|
LI Linxiang, TAN Heqing, MA Jianbo, et al. EOR technology of reservoir flow field adjustment after binary composite flooding——by taking unit Ng54-Ng68in block 6 of Gudong oilfield for example[J]. Journal of Yangtze University(Natural Science Edition), 2019, 16(12): 31-36.
|
[11] |
李远光, 方越, 石璐, 等. 特高含水油田高耗水层带识别方法研究——以双河油田为例[J]. 石油地质与工程, 2019, 33(4): 65-68.
|
|
LI Yuanguang, FANG Yue, SHI Lu, et al. Identification method of high-water consumption zone in super high water cut oilfield: By taking Shuanghe oilfield as an example[J]. Petroleum Geology and Engineering, 2019, 33(4): 65-68.
|
[12] |
荆克尧, 佟颖, 佟震. 基于综合判识与时变数值模拟的高渗条带定量描述方法[J]. 科学技术与工程, 2021, 21(10): 3999-4004.
|
|
JING Keyao, TONG Ying, TONG Zhen. Quantitative description method of relatively high- permeability zone based on comprehensive identification and time-varying numerical simulation[J]. Science Technology and Engineering, 2021, 21(10): 3999-4004.
|
[13] |
刘志宏, 朱奇, 冯其红, 等. 高耗水层带的级别划分方法[J]. 特种油气藏, 2018, 25(6): 114-119.
|
|
LIU Zhihong, ZHU Qi, FENG Qihong, et al. Level division for high water consumption zone[J]. Special Oil and Gas Reservoirs, 2018, 25(6): 114-119.
|
[14] |
刘志宏, 黄迎松, 陈瑞, 等. 孤东油田特高含水后期流场调整技术研究与应用[C]//中国石油学会. 第九届渤海湾油气田勘探开发技术研讨会论文集, 2017: 315-320.
|
|
LIU Zhihong, HUANG Yingsong, CHEN Rui, et al. Research and application of flow field adjustment technology in the late stage of ultra high water cut in Gudong Oilfield[C]// Chinese Petroleum Society. Transactions of the 9th Bohai Bay Oil and Gas Exploration and Development Technology Seminar Transactions, 2017: 315-320.
|
[15] |
刘海成. 整装油藏高耗水层段治理技术研究[J]. 石化技术, 2021, 28(11): 63-64.
|
|
LIU Haicheng. Study on treatment technology of high water consumption zone in integrated reservoir[J]. Petrochemical Industry Technology, 2021, 28(11): 63-64.
|
[16] |
康玲珍, 李辉, 文红叶, 等. 双河油田V上层系高耗水条带识别方法研究[J]. 石油地质与工程, 2017, 31(4): 57-59
|
|
KANG Lingzhen, LI Hui, WEN Hongye, et al. Identification method of high-water consumption zone in V-upper layer in Shuanghe oilfield[J]. Petroleum Geology and Engineering, 2017, 31(4): 57-59.
|
[17] |
崔传智, 韩兴源, 邴绍献, 等. 水驱油藏高含水期耗水条带表征指标及分级方法[J]. 油气地质与采收率, 2022, 29(3): 85-91.
|
|
CUI Chuanzhi, HAN Xingyuan, BING Shaoxian, et al. Characterization indexes and grading method of water-consumption zones in waterflooding oil reservoirs during high water cut period[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 85-91.
|
[18] |
赖书敏, 赵文佳, 苏建. 特高含水后期层系井网及注采优化方法与应用——以S油田T块为例[J]. 天然气与石油, 2022, 40(3): 56-61.
|
|
LAI Shumin, ZHAO Wenjia, SU Jian. Optimization method and application of well pattern and injection production system in ultra-high water cut stage: A case study on block T of S oilfield[J]. Natural Gas and Oil, 2022, 40(3): 56-61.
|
[19] |
岳野. 油藏中高渗条带对水驱效果的影响[J]. 化学工程与装备, 2020, 4: 66-68.
|
|
YUE Ye. The influence of high permeability streaks on water-driven effect in reservoir[J]. Chemical Engineering and Equipment, 2020, 4: 66-68.
|
[20] |
张赫, 单高军, 杜庆龙, 等. 大庆长垣油田特高含水后期水驱开发技术难题及其对策[J]. 大庆石油地质与开发, 2022, 41(4): 60-66.
|
|
ZHANG He, SHAN Gaojun, DU Qinglong, et al. Technical challenges and solution of water flooding development in late stage of ultra-high water cut in Placanticline oilfield in Daqing[J]. Petroleum Geology and Oilfield Development in Daqing, 2022, 41(4): 60-66.
|
[21] |
佟颖, 贾元元. 基于刻蚀模型的高渗条带控制下剩余油微观赋存特征[J]. 科学技术与工程, 2018, 18(28): 80-86.
|
|
TONG Ying, JIA Yuanyuan. Remaining oil microscopic features under the control of high-permeability zone based on etching model[J]. Science Technology and Engineering, 2018, 18(28): 80-86.
|
[22] |
孙翔宇, 任熵, 葛际江. 可视化平板模型评价注入方式对驱油的影响[J]. 实验室研究与探索, 2020, 39(9): 13-17.
|
|
SUN Xiangyu, REN Shang, GE Jijiang. Evaluation of the influence of injection patterns on flooding effect by visualizing flat glass model[J]. Research and Exploration in Laboratory, 2020, 39(9): 13-17.
|
[23] |
JIANG X F, DENG S C, LI H B, et al. Characterization of 3D pore nanostructure and stress-dependent permeability of organic-rich shales in northern Guizhou Depression, China[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2): 407-422.
doi: 10.1016/j.jrmge.2021.08.019
|
[24] |
侯健, 邱茂鑫, 陆努, 等. 采用CT技术研究岩心剩余油微观赋存状态[J]. 石油学报, 2014, 35(2): 319-325.
doi: 10.7623/syxb201402012
|
|
HOU Jian, QIU Maoxin, LU Nu, et al. Characterization of residual oil microdistribution at pore scale using computerized tomography[J]. Acta Petrolei Sinica, 2014, 35(2): 319-325.
doi: 10.7623/syxb201402012
|
[25] |
赵红兵. 三角洲前缘韵律层特高含水期剩余油分布及调整[J]. 特种油气藏, 2006, 13(2): 58-60.
|
|
ZHAO Hongbing. Residual oil distribution and reconciliation for delta front rhythm zone in extra high water cut stage[J]. Special Oil and Gas Reservoirs, 2006, 13(2): 58-60.
|
[26] |
束青林. 正韵律厚油层剩余油分布模式及水平井挖潜——以孤岛油田中一区Ng53层为例[J]. 油气地质与采收率, 2004, 11(6): 34-38.
|
|
SHU Qinglin. Distribution mode of remaining oil and tapping the potential by horizontal wells in thick positive-rhythm oil layers-taking Ng53 layer in Zhong1 area of Gudao oilfield[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(6): 34-38.
|
[27] |
杨冰, 傅强, 官敬涛, 等. 特高含水油藏不同井网流场调整模拟与驱油效率[J]. 油气藏评价与开发, 2023, 13(4): 519-524.
|
|
YANG Bing, FU Qiang, GUAN Jingtao, et al. Oil displacement efficiency based on different well pattern adjustment simulation in high water cut reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 519-524.
|
[28] |
刘博, 张荣达, 张伊琳, 等. 双河油田高耗水条带影响因素及治理对策可行性研究[J]. 油气藏评价与开发, 2020, 10(6): 96-102.
|
|
LIU Bo, ZHANG Rongda, ZHANG Yilin, et al. Influencing factors and countermeasures feasibility of high water consumption strip in Shuanghe Oilfield[J]. Reservoir Evaluation and Development, 2020, 10(6): 96-102.
|