油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (6): 899-907.doi: 10.13809/j.cnki.cn32-1825/te.2024.06.011

• 综合研究 • 上一篇    下一篇

缝洞型碳酸盐岩油藏水驱特征曲线类型及适应性——以塔河油田为例

郑玲丽1(), 朱冰倩2, 张宇豪1, 李小波3, 彭佳明4, 肖文联1()   

  1. 1.西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
    2.中国石油勘探开发研究院,北京 100083
    3.中国石化西北油田分公司勘探开发研究院,新疆 乌鲁木齐 830011
    4.中国石油塔里木油田分公司,新疆 库尔勒 841000
  • 收稿日期:2023-10-20 发布日期:2024-12-10 出版日期:2024-12-26
  • 通讯作者: 肖文联 E-mail:zhengjessie@163.com;joshxiao@163.com
  • 作者简介:郑玲丽(1984—),女,硕士,实验师,从事非常规油气渗流物理及其在油气田开发中应用的教学与科研工作。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: zhengjessie@163.com
  • 基金资助:
    国家自然科学基金项目“黏度可控的原位增黏体系构建及高效驱油机理研究”(U19B2010);西南石油大学非常规油气渗流物理青年科技创新团队“非常规油气渗流物理”(2018CXTD10)

Types and applicability of waterflooding characteristic curves in fractured-cavity carbonate reservoirs: A case study of Tahe Oilfield

ZHENG Lingli1(), ZHU Bingqian2, ZHANG Yuhao1, LI Xiaobo3, PENG Jiaming4, XIAO Wenlian1()   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Development Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
    3. Research Institute of Exploration and Development, Sinopec Northwest China Oilfield Branch Company, Urumqi, Xinjiang 830011, China
    4. PetroChina Tarim Oilfield Branch Company, Korla, Xinjiang 841000, China
  • Received:2023-10-20 Online:2024-12-10 Published:2024-12-26
  • Contact: XIAO Wenlian E-mail:zhengjessie@163.com;joshxiao@163.com

摘要:

水驱特征曲线在油田生产动态分析中被广泛使用,现有的水驱特征曲线大多是通过统计分析砂岩油藏的生产数据建立的,常用的有甲、乙、丙、丁4种类型。为探究这些类型是否适用于缝洞型碳酸盐岩油藏,以塔河缝洞型碳酸盐岩油藏为例,结合油藏缝洞结构和油水生产数据,确定甲型水驱曲线更适用于塔河缝洞型油藏水驱特征。研究发现,塔河油田长时间开发的255口油井呈现出6种含水率上升类型和4种水驱特征曲线类型。结合实例分析得到,受单洞控制的油井,呈现出单直线型水驱特征曲线和缓慢上升型含水率上升曲线;受双洞控制的油井,水驱特征曲线为双直线型,含水率上升曲线呈现出缓慢上升、快速上升和波动型;受双洞控制的油井在注水影响下,水驱特征曲线形态为三直线型,含水上升率曲线呈现出快速上升、暴性水淹型;多井位于多洞,缝洞结构复杂的油井,水驱特征曲线表现为不规则型,含水率上升曲线呈现出缓慢上升、快速上升、波动型和暴性水淹型。对比砂岩油藏的水驱特征曲线,明确了碳酸盐岩油藏的水驱特征曲线适用条件为稳定水驱原则(即直线原则)和无固定含水率原则,为缝洞型碳酸盐岩油藏的生产动态预测提供了基础。

关键词: 缝洞型油藏, 水驱特征曲线, 适应性, 含水率, 缝洞结构

Abstract:

Waterflooding characteristic curves are widely used in analyzing oilfield production dynamics. Most existing waterflooding characteristic curves are derived from statistical analyses of production data from sandstone reservoirs, commonly categorized into four types: Type A, Type B, Type C, and Type D. To assess the applicability of these curve types to fractured-cavity carbonate reservoirs, the Tahe fractured-cavity carbonate reservoir was selected as a case study. By analyzing reservoir fracture-cavity structures and oil-water production data, the Type A waterflooding curve was identified as more suitable for the Tahe reservoir. The study of 255 wells with long-term production data revealed six water cut increase patterns and four waterflooding characteristic curve types. Wells controlled by single cavities exhibited single-straight-line waterflooding characteristic curves and slow water cut increase patterns. Wells controlled by dual cavities displayed double-straight-line waterflooding characteristic curves, with water cut increase patterns categorized as slow rise, rapid rise, or fluctuating. For wells affected by water injection in dual-cavity structures, triple-straight-line waterflooding characteristic curves were observed, with water cut increase patterns featuring rapid rise and catastrophic flooding. Wells located in multi-cavity, complex fracture-cavity structures demonstrated irregular waterflooding characteristic curves, with water cut patterns including slow rise, rapid rise, fluctuating, and catastrophic flooding. A comparison with waterflooding characteristic curves of sandstone reservoirs clarified the applicability conditions for fractured-cavity carbonate reservoirs: adherence to the stable waterflooding principle(i.e., the straight-line principle) and the absence of a fixed water cut threshold. This study provides a foundation for predicting production dynamics in fractured-cavity carbonate reservoirs.

Key words: fractured-cavity carbonate reservoirs, waterflooding characteristic curve, applicability, water cut, fracture-cavity structure

中图分类号: 

  • TE344