[1] |
李洪辉, 岳大力, 李伟, 等. 基于分频智能反演的曲流河点坝与废弃河道识别[J]. 石油地球物理勘探, 2023, 58(2): 358-368.
|
|
LI Honghui, YUE Dali, LI Wei, et al. Identification of point bar and abandoned channel of meandering river by spectral decomposition inversion based on machine learning[J]. Oil Geophysical Prospecting, 2023, 58(2): 358-368.
|
[2] |
赵鹏飞, 刘财, 冯晅, 等. 基于神经网络的随机地震反演方法[J]. 地球物理学报, 2019, 62(3): 1172-1180.
|
|
ZHAO Pengfei, LIU Cai, FENG Xuan, et al. Stochastic seismic inversion based on neural network[J]. Chinese Journal of Geophysics, 2019, 62(3): 1172-1180.
|
[3] |
程冰洁, 徐天吉, 罗诗艺, 等. 基于机器学习的深层页岩有利储集层预测方法及实践[J]. 石油勘探与开发, 2022, 49(5): 1-11.
|
|
CHENG Bingjie, XU Tianji, LUO Shiyi, et al. Method and practice of deep favorable shale reservoir prediction based on machine learning[J]. Petroleum Exploration and Development, 2022, 49(5): 1-11.
|
[4] |
安鹏, 曹丹平, 赵宝银, 等. 基于LSTM循环神经网络的储层物性参数预测方法研究[J]. 地球物理学进展, 2019, 34(5): 1849-1858.
|
|
AN Peng, CAO Danping, ZHAO Baoyin, et al. Reservoir physical parameters prediction based on LSTM recurrent neural network[J]. Progress in Geophysics, 2019, 34(5): 1849-1858.
|
[5] |
张国印, 王志章, 林承焰, 等. 基于小波变换和卷积神经网络的地震储层预测方法及应用[J]. 中国石油大学学报(自然科学版), 2020, 44(4): 83-93.
|
|
ZHANG Guoyin, WANG Zhizhang, LIN Chengyan, et al. Seismic reservoir prediction method based on wavelet transform and convolutional neural network and its application[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(4): 83-93.
|
[6] |
LI W, YUE D L, WANG W F, et al. Fusing multiple frequency-decomposed seismic attributes with machine learning for thickness prediction and sedimentary facies interpretation in fluvial reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 177: 1087-1102.
|
[7] |
张宇航, 时保宏, 张曰静, 等. 机器学习方法在浅层滩坝相薄储层孔隙度预测中的应用: 以准噶尔盆地车排子地区白垩系为例[J]. 沉积学报, 2023, 41(5): 1559-1567.
|
|
ZHANG Yuhang, SHI Baohong, ZHANG Yuejing, et al. Application of Machine Learning for Porosity Estimation of Beach and Bar Sand Bodies in a Lacustrine Basin: A case study of the Lower Cretaceous strata in Chepaizi area, Junggar Basin, NW China[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1559-1567.
|
[8] |
蔡义峰, 熊婷, 姚卫江, 等. 地震多属性分析技术在薄层砂体预测中的应用[J]. 石油地球物理勘探, 2017, 52(增刊2): 140-145.
|
|
CAI Yifeng, XIONG Ting, YAO Weijiang, et al. Thin sandstone prediction with seismic multi-attribute analysis[J]. Oil Geophysical Prospecting, 2017, 52(Suppl. 2): 140-145.
|
[9] |
曲志鹏, 王芳芳, 张云银, 等. 基于关联规则与随机森林的地震多属性砂体厚度预测[J]. 地质科技通报, 2021, 40(3): 211-218.
|
|
QU Zhipeng, WANG Fangfang, ZHANG Yunyin, et al. Thickness prediction of seismic multi-attributes sand based on association rules and random forests[J]. Bulletin of Geological Science and Technology, 2021, 40(3): 211-218.
|
[10] |
史长林, 魏莉, 张剑, 等. 基于机器学习的储层预测方法[J]. 油气地质与采收率, 2022, 29(1): 90-97.
|
|
SHI Changlin, WEI Li, ZHANG Jian, et al. Reservoir prediction method based on machine learning[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 90-97.
|
[11] |
YANG R X, SUN C Y, XU L. Prediction of photovoltaic power generation based on stacking model fusion[J]. Computer System Application, 2020, 29(5): 36-45.
|
[12] |
曹志民, 丁璐, 韩建. 基于Stacking集成学习的声波时差测井曲线复原研究[J]. 化工自动化及仪表, 2024, 51(3): 470-476.
|
|
CAO Zhimin, DING Lu, HAN Jian. Research on acoustic moveout logging curves restoration based on stacking ensemble learning[J]. Control and Instruments in Chemical Industry, 2024, 51(3): 470-476.
|
[13] |
WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259.
|
[14] |
钱玉贵. 机器深度学习技术在致密砂岩储层预测中的应用: 以川西坳陷新场须家河组为例[J]. 油气藏评价与开发, 2023, 13(5): 600-607.
|
|
QIAN Yugui. Application of machine deep learning technology in tight sandstones reservoir prediction: A case study of Xujiahe Formation in Xinchang, western Sichuan Depression[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 600-607.
|
[15] |
吴胜和, 岳大力, 刘建民, 等. 地下古河道储层构型的层次建模研究[J]. 中国科学(地球科学), 2008, 38(增刊1): 111-121.
|
|
WU Shenghe, YUE Dali, LIU Jianmin, et al. Hierarchy modeling of subsurface palaeochannel reservoir architecture[J]. Scientia Sinica(Terrae): Earth Sciences, 2008, 38(Suppl. 1): 111-121.
|
[16] |
MIALL A D. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits[J]. Earth-Science Reviews, 1985, 22(4): 261-308.
|
[17] |
MIALL A D. The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology[M]. Berlin:Springer, 1996.
|
[18] |
侯东梅, 赵秀娟, 汪巍, 等. 地下曲流河点坝砂体规模定量表征研究[J]. 油气藏评价与开发, 2018, 8(3): 7-11.
|
|
HOU Dongmei, ZHAO Xiujuan, WANG Wei, et al. Quantitative characterization research for point bar sand body of subsurface meandering river environment: Taking Minghua Formation of Bohai C Oilfield as an Instance[J]. Petroleum Reservoir Evaluation and Development, 2018, 8(3): 7-11.
|
[19] |
KELLY S. Scaling and hierarchy in braided rivers and their deposits: Examples and implications for reservoir modeling[M]. UK: Blackwell Publishing, 2006.
|
[20] |
陈薪凯, 刘景彦, 陈程, 等. 主要构型要素细分下的曲流河单砂体识别[J]. 沉积学报, 2019, 38(1): 205-217.
|
|
CHEN Xinkai, LIU Jingyan, CHEN Cheng, et al. The identification of single sand body in meandering river deposits based on the subdivision of main architecture[J]. Acta Sedimentologica Sinica, 2019, 38(1): 205-217.
|
[21] |
徐中波, 汪利兵, 申春生, 等. 渤海蓬莱19-3 油田新近系明下段曲流河储层构型表征[J]. 岩性油气藏, 2023, 35(5): 100-107.
|
|
XU Zhongbo, WANG Libing, SHEN Chunsheng, et al. Architecture characterization of meandering river reservoirs of lower Minghuazhen Formation of Neogene in Penglai 19-3 oilfield, Bohai Sea[J]. Lithologic Reservoirs, 2023, 35(5): 100-107.
|
[22] |
权勃, 侯东梅, 牟松茹, 等. 基于水平井信息的辫状河储层构型单元空间展布研究[J]. 中国海上油气, 2020, 32(4): 96-103.
|
|
QUAN Bo, HOU Dongmei, MOU Songru, et al. Study on configuration unit spatial distribution of braided river reservoirs based on horizontal well information[J]. China Offshore Oil and Gas, 2020, 32(4): 96-103.
|