油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (6): 995-1006.doi: 10.13809/j.cnki.cn32-1825/te.2025.06.005
宋学梅1(
), 张琨1(
), 董良2, 马萌芽3, 刘会虎2, 徐宏杰2, 王智1
收稿日期:2024-09-25
发布日期:2025-10-24
出版日期:2025-12-26
通讯作者:
张琨(1992—),男,博士,讲师,主要从事煤层气开发地质与工程的研究。地址:安徽省淮南市泰丰大街168号安徽理工大学,邮政编码:232001。E-mail: kzhang@aust.edu.cn作者简介:宋学梅(2001—),女,在读硕士研究生,主要从事非常规天然气地质勘测与开发的研究。地址:安徽省淮南市泰丰大街168号安徽理工大学,邮政编码:232001。E-mail: songxuemei1133@163.com
基金资助:
SONG Xuemei1(
), ZHANG Kun1(
), DONG Liang2, MA Mengya3, LIU Huihu2, XU Hongjie2, WANG Zhi1
Received:2024-09-25
Online:2025-10-24
Published:2025-12-26
摘要:
深部煤层注入CO2强化煤层气抽采兼具环保效益与经济效益,有广阔的发展前景。为探讨不同类型煤体在CO2注入后的煤体结构变化情况,选用最大镜质体反射率(Ro,max)不同的5个样品,开展模拟煤层埋深为1 500 m温压条件下的超临界CO2注入实验,利用低温N2吸附法和压汞法测试注入前后煤样的孔隙结构变化特征,并采用分形理论定量比较其变化程度。N2吸附实验结果显示:经过超临界CO2-H2O作用前后煤样孔容均随煤阶增加先减小后增大,在焦煤处形成拐点,孔容在微孔阶段(孔隙直径介于0~2 nm)增幅最大。压汞实验的孔容变化情况较为复杂,在过渡孔(孔隙直径介于>2~50 nm)和裂隙(孔隙直径大于1 000 nm)阶段增幅明显,这是由于超临界CO2-H2O反应增加了煤中的非有效连通孔隙,提升了煤样的局部连通性;部分样品反应后总孔容甚至有减小趋势,可能与脱落的矿物质堵塞孔隙有关。对反应前后样品的孔隙参数分形分析结果显示:不同样品的孔隙结构变化取决于煤体特征参数,低煤阶、高煤阶煤反应后孔容变化幅度更大,且矿物质含量越高变化程度更大。该研究有助于深入理解深部煤层CO2注入对煤层孔隙结构的改造作用,可为CO2地质封存与煤层气强化开发(CO2-ECBM)工程选址提供参考。
中图分类号:
SONG Xuemei,ZHANG Kun,DONG Liang, et al. Evolution and fractal characteristics of pore structure in coals of different ranks under supercritical CO2-H2O[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(6): 995-1006.
表3
煤样反应前后有效连通孔隙和非有效连通孔隙"
| 样品编号 | 反应情况 | 总孔隙体积/(mL/g) | 有效连通孔隙体积/(mL/g) | 非连通孔隙体积/(mL/g) |
|---|---|---|---|---|
| LZ | 反应前 | 0.008 704 | 0.004 365 | 0.004 339 |
| 反应后 | 0.021 555 | 0.013 548 | 0.008 007 | |
| YZ | 反应前 | 0.036 914 | 0.019 761 | 0.017 153 |
| 反应后 | 0.038 246 | 0.021 458 | 0.016 788 | |
| XY | 反应前 | 0.038 400 | 0.032 100 | 0.006 300 |
| 反应后 | 0.047 740 | 0.020 494 | 0.027 246 | |
| XJ | 反应前 | 0.034 600 | 0.030 200 | 0.004 400 |
| 反应后 | 0.031 051 | 0.020 397 | 0.010 654 | |
| SH | 反应前 | 0.032 500 | 0.029 000 | 0.003 500 |
| 反应后 | 0.027 141 | 0.014 656 | 0.012 485 |
| [1] | 桑树勋, 袁亮, 刘世奇, 等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报, 2022, 47(4): 1430-1451. |
| SANG Shuxun, YUAN Liang, LIU Shiqi, et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society, 2022, 47(4): 1430-1451. | |
| [2] | 李勇, 徐立富, 张守仁, 等. 深煤层含气系统差异及开发对策[J]. 煤炭学报, 2023, 48(2): 900-917. |
| LI Yong, XU Lifu, ZHANG Shouren, et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society, 2023, 48(2): 900-917. | |
| [3] | 桑树勋, 华凯敏, 屠坤坤, 等. 生物质能高效利用与二氧化碳捕集利用封存耦合技术体系(BECCS)的发展方向与研究进展[J]. 中国矿业大学学报, 2023, 52(5): 845-867. |
| SANG Shuxun, HUA Kaimin, TU Kunkun, et al. The development direction and research progress of the coupled technology system of biomass energy efficient utilization and carbon dioxide capture, utilization and storage (BECCS)[J]. Journal of China University of Mining &Technology, 2023, 52(5): 845-867. | |
| [4] | 蒋曙鸿, 师素珍, 赵康, 等. 深部煤及煤层气勘探前景及发展方向[J]. 科技导报, 2023, 41(7): 106-113. |
| JIANG Shuhong, SHI Suzhen, ZHAO Kang, et al. Prospect and development direction of deep coal and coalbed methane exploration[J]. Science & Technology Review, 2023, 41(7): 106-113. | |
| [5] | 李勇, 潘松圻, 宁树正, 等. 煤系成矿学内涵与发展: 兼论煤系成矿系统及其资源环境效应[J]. 中国科学: 地球科学, 2022, 52(10): 1948-1965. |
| LI Yong, PAN Songqi, NING Shuzheng, et al. Coal measure metallogeny: Metallogenic system and implication for resource and environment[J]. Scientia Sinica Terrae, 2022, 52(10): 1948-1965. | |
| [6] | 张守仁, 桑树勋, 吴见, 等. CO2驱煤层气关键技术研发及应用[J]. 煤炭学报, 2022, 47(11): 3952-3964. |
| ZHANG Shouren, SANG Shuxun, WU Jian, et al. Progress and application of key technologies for CO2 enhancing coalbed methane[J]. Journal of China Coal Society, 2022, 47(11): 3952-3964. | |
| [7] | 张千贵, 李权山, 范翔宇, 等. 中国煤与煤层气共采理论技术现状及发展趋势[J]. 天然气工业, 2022, 42(6): 130-145. |
| ZHANG Qiangui, LI Quanshan, FAN Xiangyu, et al. Current situation and development trend of theories and technologies for coal and CBM co-mining in China[J]. Natural Gas Industry, 2022, 42(6): 130-145. | |
| [8] | ZHANG K Z, CHENG Y P, LI W, et al. Influence of supercritical CO2 on pore structure and functional groups of coal: Implications for CO2 sequestration[J]. Journal of Natural Gas Science & Engineering, 2017, 40: 288-298. |
| [9] | WANG L L, LONG Z J, QU Z H, et al. Effects of functional groups on supercritical CH4 adsorption and desorption characteristics of tectonically deformed coals[J]. Fuel, 2022, 325: 1-17. |
| [10] | 孟召平, 刘珊珊, 王保玉, 等. 不同煤体结构煤的吸附性能及其孔隙结构特征[J]. 煤炭学报, 2015, 40(8): 1865-1870. |
| MENG Zhaoping, LIU Shanshan, WANG Baoyu, et al. Adsorption capacity and its pore structure of coals with different coal body structure[J]. Journal of China Coal Society, 2015, 40(8): 1865-1870. | |
| [11] | 陈向军, 刘军, 王林, 等. 不同变质程度煤的孔径分布及其对吸附常数的影响[J]. 煤炭学报, 2013, 38(2): 294-300. |
| CHEN Xiangjun, LIU Jun, WANG Lin, et al. Influence of pore size distribution of different metamorphic grade of coal on adsorption constant[J]. Journal of China Coal Society, 2013, 38(2): 294-300. | |
| [12] | LIU S Q, MA J S, SANG S X, et al. The effects of supercritical CO2 on mesopore and macropore structure in bituminous and anthracite coal[J]. Fuel, 2018, 223: 32-43. |
| [13] | 贾金龙. 超临界CO2注入无烟煤储层煤岩应力应变效应的实验模拟研究[D]. 徐州: 中国矿业大学, 2016. |
| JIA Jinlong. Experimental Simulation on Stress and Strain Effects as Supercritical CO2 being Injected into Deep Anthracite Reservoirs[D]. Xuzhou: China University of Mining and Technology, 2016. | |
| [14] | 桑树勋. 二氧化碳地质存储与煤层气强化开发有效性研究述评[J]. 煤田地质与勘探, 2018, 46(5): 1-9. |
| SANG Shuxun. Research review on technical effectiveness of CO2 geological storage and enhanced coalbed methane recovery[J]. Coal Geology & Exploration, 2018, 46(5): 1-9. | |
| [15] | LIN H F, FUJII T, TAKISAWA R, et al. Experimental evaluation of interactions in supercritical CO2/water/rock minerals system under geologic CO2 sequestration conditions[J]. Journal of Materials Science, 2008, 43(7): 2307-2315. |
| [16] | 王恬, 桑树勋, 刘世奇, 等. ScCO2-H2O作用下不同煤级煤化学结构变化的实验研究[J]. 煤田地质与勘探, 2018, 46(5): 60-65. |
| WANG Tian, SANG Shuxun, LIU Shiqi, et al. Experiment study on the chemical structure changes of different rank coals under action of supercritical carbon dioxide and water[J]. Coal Geology & Exploration, 2018, 46(5): 60-65. | |
| [17] | GUAN Y, ZHOU Z, GE Z, et al. Effect of ScCO2-H2O treatment duration on the microscopic structure of coal reservoirs: Implications for CO2 geological sequestration in coal[J]. International Journal of Coal Geology, 2024, 282: 104439. |
| [18] | 李阳, 张玉贵, 张浪, 等. 基于压汞、低温N2吸附和CO2吸附的构造煤孔隙结构表征[J]. 煤炭学报, 2019, 44(4): 1188-1196. |
| LI Yang, ZHANG Yugui, ZHANG Lang, et al. Characterization on pore structure of tectonic coals based on the method of mercury intrusion, carbon dioxide adsorption and nitrogen adsorption[J]. Journal of China Coal Society, 2019, 44(4): 1188-1196. | |
| [19] | 程波, 马代辉, 高月. 煤的灰分、挥发分与孔隙率的关联及其对瓦斯放散初速度的影响[J]. 矿业安全与环保, 2017, 44(1): 12-17. |
| CHENG Bo, MA Daihui, GAO Yue. Correlation of Ash Content, Volatile Matter and Porosity of Coal and Their Impact on Initial Speed of Methane Diffusion[J]. Mining Safety & Environmental Protection, 2017, 44(1): 12-17. | |
| [20] | 李树刚, 胡魏魏, 林海飞, 等. 煤体灰分与挥发分对煤吸附甲烷性能的影响实验研究[J]. 矿业安全与环保, 2015, 42(1): 16-18. |
| LI Shugang, HU Weiwei, LIN Haifei,et al. Experimental Study on Influence of Coal Ash Content and Volatile Matter upon Its Methane Adsorption Capability[J]. Mining Safety & Environmental Protection, 2015, 42(1): 16-18. | |
| [21] | 王晓明, 陈军斌, 任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望[J]. 油气藏评价与开发, 2023, 13(1): 23-30. |
| WANG Xiaoming, CHEN Junbin, REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 23-30. | |
| [22] | 赵爱红, 廖毅, 唐修义. 煤的孔隙结构分形定量研究[J]. 煤炭学报, 1998, 23(4): 105-108. |
| ZHAO Aihong, LIAO Yi, TANG Xiuyi. Quantitative analysis of pore structure by fractal analysis[J]. Journal of China Coal Society, 1998, 23(4): 105-108. | |
| [23] | HU S, LI MIN, XIANG J, et al. Fractal characteristic of three Chinese coals[J]. Fuel, 2004, 83(10): 1307-1313. |
| [24] | SU E, LIANG Y P, ZOU Q. Structures and fractal characteristics of pores in long-flame coal after cyclical supercritical CO2 treatment[J]. Fuel, 2021, 286: 1-12. |
| [25] | 张昆, 孟召平, 金毅, 等. 不同煤体结构煤的孔隙结构分形特征及其研究意义[J]. 煤炭科学技术, 2023, 51(10): 198-206. |
| ZHANG Kun, MENG Zhaoping, JIN Yi, et al. Fractal characteristics of pore structures on different coal structures and its research significance[J]. Coal Science and Technology, 2023, 51(10): 198-206. | |
| [26] | SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/ solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 1985, 57(4): 609-619. |
| [27] | LIU S Q, SANG S X, WANG G, et al. FIB-SEM and X-ray CT characterization of interconnected pores in high-rank coal formed from regional metamorphism[J]. Journal of Petroleum Science and Engineering, 2017, 148: 21-31. |
| [28] | 郝晋伟, 李阳. 构造煤孔隙结构多尺度分形表征及影响因素研究[J]. 煤炭科学技术, 2020, 48(8): 164-174. |
| HAO Jinwei, LI Yang. Research on multi-scale fractal characteristics of pore structure in tectonic coal and analysis of its influence factors[J]. Coal Science and Technology, 2020, 48(8): 164-174. | |
| [29] | 贾男. 基于低温氮吸附法的酸化煤样孔隙分形特征研究[J]. 煤矿安全, 2021, 52(1): 53-57. |
| JIA Nan. Study on pore fractal characteristics of acidified coal samples based on low temperature nitrogen experiment[J]. Safety in Coal Mines, 2021, 52(1): 53-57. | |
| [30] | 张晓辉, 要惠芳, 李伟, 等. 韩城矿区构造煤纳米级孔隙结构的分形特征[J]. 煤田地质与勘探, 2014, 42(5): 4-8. |
| ZHANG Xiaohui, YAO Huifang, LI Wei, et al. Fractal characteristics of nano-pore structure in tectonically deformed coals in Hancheng mining area[J]. Coal Geology & Exploration, 2014, 42(5): 4-8. | |
| [31] | ZHANG K, LIU H H, MA M Y, et al. Multiscale fractal characterization of pore-fracture structure of tectonically deformed coal compared to primary undeformed coal: Implications for CO2 geological sequestration in coal seams[J]. Processes, 2023, 11(10), 2934. |
| [32] | 张琨. 超临界CO2-H2O-煤岩反应体系影响下煤储层孔裂隙结构演化特征[D]. 徐州: 中国矿业大学, 2017. |
| ZHANG Kun. Coal Reservoir Pore & Fracture Structure Evolution Characteristics Related to the ScCO2-H2O-Coal Reaction System[D]. Xuzhou: China University of Mining and Technology, 2017. | |
| [33] | 秦勇. 中国深部煤层气地质研究进展[J]. 石油学报, 2023, 44(11): 1791-1811. |
| QIN Yong. Progress on geological research of deep coalbed methane in China[J]. Acta Petrolei Sinica, 2023, 44(11): 1791-1811. | |
| [34] | 申建, 秦勇, 张春杰, 等. 沁水盆地深煤层注入CO2提高煤层气采收率可行性分析[J]. 煤炭学报, 2016, 41(1): 156-161. |
| SHEN Jian, QIN Yong, ZHANG Chunjie, et al. Feasibility of enhanced coalbed methane recovery by CO2, sequestration into deep coalbed of Qinshui Basin[J]. Journal of China Coal Society, 2016, 41(1): 156-161. | |
| [35] | 徐凤银. 深部煤层气助力产业发展进入新阶段[J]. 石油知识, 2023, 20(4): 4-6. |
| XU Fengyin. Deep coalbed methane helps the development of the industry enter a new stage[J]. Petroleum Knowledge, 2023, 20(4): 4-6. | |
| [36] | 秦勇, 徐志伟, 张井. 高煤级煤孔径结构的自然分类及其应用[J]. 煤炭学报, 1995, 20(3): 266-271. |
| QIN Yong, XU Zhiwei, ZHANG Jing. Natural classification of pore structure of high rank coal and its application[J]. Journal of China Coal Society, 1995, 20(3): 266-271. | |
| [37] | HU B, CHENG Y P, PAN Z J. Classification methods of pore structures in coal: A review and new insight[J]. Journal of Natural Gas Science and Engineering, 2023, 110: 18. |
| [38] | DUBININ M M, STOECKLI H F. Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents[J]. Journal of Colloid and Interface Science. 1980, 75: 34-42. |
| [39] | LIU C J, WANG G X, SANG S X, et al. Changes in pore structure of anthracite coal associated with CO2 sequestration process[J]. Fuel, 2010, 89(10): 2665-2672. |
| [40] | 傅雪海, 秦勇, 薛秀谦, 等. 煤储层孔、裂隙系统分形研究[J]. 中国矿业大学学报, 2001, 30(3): 225-228. |
| FU Xuehai, QIN Yong, XUE Xiuqian, et al. Research on Fractals of Pore and Fracture-Structure of Coal Reservoirs[J]. Journal of China University of Mining & Technology, 2001, 30(3): 225-228. | |
| [41] | 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, (5): 552-556. |
| CHEN Ping, TANG Xiuyi. The research on the adsorption of nitrogen in low temperature and micro-pore properties in coal[J]. Journal of China Coal Society, 2001, (5): 552-556. | |
| [42] | 降文萍, 宋孝忠, 钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响[J]. 煤炭学报, 2011, 36(4): 609-614. |
| JIANG Wenping, SONG Xiaozhong, ZHONG Lingwen. Research on the pore properties of different coal body structure coals and the effects on gas outburst based on the low-temperature nitrogen adsorption method[J]. Journal of China Coal Society, 2011, 36(4): 609-614. | |
| [43] | 杜艺. ScCO2注入煤层矿物地球化学及其储层结构响应的实验研究[D]. 徐州: 中国矿业大学, 2018. |
| DU Yi. Experimental study on mineral geochemical reaction and its inducing the reservoir structure response with the injection of ScCO2 into the coal seam[D]. Xuzhou: China University of Mining and Technology, 2018. | |
| [44] | 王恬. ScCO2与煤中有机质作用及其孔隙结构响应的实验研究[D]. 徐州: 中国矿业大学, 2018. |
| WANG Tian. Experimental Study on the Reaction of ScCO2 and Organic Matter in Coal and its Pore Structure Response[D]. Xuzhou: China University of Mining and Technology, 2018. | |
| [45] | 童宏树, 胡宝林. 鄂尔多斯盆地煤储层低温氮吸附孔隙分形特征研究[J]. 煤炭技术, 2004, 23(7): 1-3. |
| TONG Hongshu, HU Baolin. Research on the fractal characteristics of pore of coal reservoirs tested with cryogenic nitrogen adsorption in the Ordos Basin[J]. Coal Technology, 2004, 23(7): 1-3. | |
| [46] | 李凤丽, 姜波, 宋昱, 等. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学, 2017, 28(1): 173-182. |
| LI Fengli, JIANG Bo, SONG Yu, et al. Nano scale pore structure and fractal characteristics of low-medium metamorphic tectonically deformed coal[J]. Natural Gas Geoscience, 2017, 28(1): 173-182. | |
| [47] | 高为, 易同生, 金军, 等. 黔西地区煤样孔隙综合分形特征及对孔渗性的影响[J]. 煤炭学报, 2017, 42(5): 1258-1265. |
| GAO Wei, YI Tongsheng, JIN Jun, et al. Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability[J]. Journal of China Coal Society, 2017, 42(5): 1258-1265. | |
| [48] | 刘长江. CO2地质储存煤储层结构演化与元素迁移的模拟实验研究[D]. 徐州: 中国矿业大学, 2010. |
| LIU Changjiang. Experimental research on structure evolution and element migration of coal reservoir associated with CO2 geological storage[D]. Xuzhou: China University of Mining and Technology, 2010. | |
| [49] | ZHANG K, SANG S X, LIU C J, et al. Experimental study the influences of geochemical reaction on coal structure during the CO2 geological storage in deep coal seam[J]. Journal of Petroleum Science and Engineering, 2019, 178: 1006-1017. |
| [50] | 傅雪海, 秦勇, 韦重韬. 煤层气地质学[M]. 徐州: 中国矿业大学出版社, 2007. |
| FU Xuehai, QIN Yong, WEI Chongtao. Coalbed Methane Geology[M]. Xuzhou: China University of Mining & Technology Press, 2007. | |
| [51] | 王志坚. CO2相态变化致裂对煤层吸附性影响机理研究[J]. 油气藏评价与开发, 2024, 14(6): 967-974. |
| WANG Zhijian. Mechanism study on effect of CO2 phase transition fracturing on methane adsorption in coal[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 967-974. | |
| [52] | DAY S, DUFFY G, SAKUROVS R, et al. Effect of coal properties on CO2 sorption capacity under supercritical conditions[J]. International Journal of Greenhouse Gas Control, 2008, 2(3): 342-352. |
| [53] | WANG K R, XU T F, WANG F G, et al. Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J]. International Journal of Coal Geology, 2016, 154: 265-274. |
| [54] | 杨明, 柳磊, 刘佳佳, 等. 中阶煤孔隙结构的氮吸附-压汞-核磁共振联合表征研究[J]. 煤炭科学技术, 2021, 49(5): 67-74. |
| YANG Ming, LIU Lei, LIU Jiajia, et al. Study on joint characterization of pore structure of middle-rank coal by nitrogen adsorption-mercury intrusion-NMR[J]. Coal Science and Technology, 2021, 49(5): 67-74. |
| [1] | 张文, 黄红星, 刘莹, 冯延青, 孙伟, 李子玲, 王婧, 赵增平. 鄂尔多斯盆地保德区块煤层气井可采储量与产气特征研究 [J]. 油气藏评价与开发, 2025, 15(2): 257-265. |
| [2] | 崔传智, 隋迎飞, 王一单, 吴忠维, 李静. 基于分形理论的聚合物颗粒分散相驱油相对渗透率模型 [J]. 油气藏评价与开发, 2025, 15(1): 88-95. |
| [3] | 邬忠虎, 夏茜, 王文涛, 唐摩天, 雷文丽, 孟祥瑞. 复杂方解石脉充填煤岩细观损伤演化特性研究 [J]. 油气藏评价与开发, 2024, 14(6): 942-951. |
| [4] | 张志超, 柏明星, 杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
| [5] | 李颖, 马寒松, 李海涛, GANZER Leonhard, 唐政, 李可, 罗红文. 超临界CO2对碳酸盐岩储层的溶蚀作用研究 [J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
| [6] | 户海胜,高阳,单江涛,雷现梅,张玉龙,张广超,叶仲斌. 超临界CO2萃取致密砂砾岩中原油效果影响因素实验研究 [J]. 油气藏评价与开发, 2021, 11(6): 845-851. |
| [7] | 王英伟,伍顺伟,覃建华,叶义平,高阳,张景. 超临界CO2浸泡对玛湖不同黏土矿物含量砂砾岩储层渗透率影响 [J]. 油气藏评价与开发, 2021, 11(6): 837-844. |
| [8] | 熊亮,庞河清,赵勇,魏力民,周桦,曹茜. 威荣深层页岩气储层微观孔隙结构表征及分类评价 [J]. 油气藏评价与开发, 2021, 11(2): 154-163. |
| [9] | 马东民,高正,陈跃,张辉,邵凯,张治仓,吴讯,杨甫. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异 [J]. 油气藏评价与开发, 2020, 10(4): 17-24. |
| [10] | 李士伦,孙雷,陈祖华,李健,汤勇,潘毅. 再论CO2驱提高采收率油藏工程理念和开发模式的发展 [J]. 油气藏评价与开发, 2020, 10(3): 1-14. |
| [11] | 杨兆中,邓庄,于梦男,李小刚,何睿,黄河. 碳酸盐岩基质酸化蚓孔生长机理实验研究 [J]. 油气藏评价与开发, 2020, 10(2): 24-29. |
| [12] | 王镜惠,梅明华,梁正中,王华军. 沁水盆地南部高煤阶煤层气高产区定量评价 [J]. 油气藏评价与开发, 2019, 9(4): 68-72. |
| [13] | 赵立强,缪尉杰,罗志锋,龚云蕾,汪鹏,李屹洋. 闭合酸蚀裂缝导流能力模拟研究 [J]. 油气藏评价与开发, 2019, 9(2): 25-32. |
| [14] | 罗志锋,余洋,赵立强,李小刚,赵兴东. 多因素下多级交替注入酸液指进实验研究 [J]. 油气藏评价与开发, 2018, 8(4): 36-41. |
|
||