油气藏评价与开发 ›› 2020, Vol. 10 ›› Issue (5): 63-69.doi: 10.13809/j.cnki.cn32-1825/te.2020.05.009
收稿日期:
2019-10-17
出版日期:
2020-10-26
发布日期:
2020-09-24
作者简介:
何乐(1988 —),男,硕士,工程师,主要从事油气田增产技术的现场服务和室内研究工作。地址:四川省成都市成华区华盛路46号,邮政编码:610000。E-mail: 基金资助:
Received:
2019-10-17
Online:
2020-10-26
Published:
2020-09-24
摘要:
目前页岩气井间压窜问题突出,严重干扰邻井生产。以威远页岩气示范区某区块为研究对象,根据压窜后母井生产特征,提出以母井产量恢复速度为核心的压窜影响程度量化评价指标,并采用灰色关联分析法评价了10项地质、工程影响因素。结果表明,井间距离、母井生产时间、平均单簇用液规模、天然裂缝与压窜程度的灰色关联度较高。在此基础上,评价了子母井位置关系、母井生产时间、单簇用液规模、天然裂缝对压窜程度的影响规律。评价结果表明:①井间压窜以巷道平行模式为主,巷道错位/相对模式压窜次之;②随着母井生产时间增长,母井产量恢复速度、恢复程度趋于降低,建议子井压裂时间控制在母井生产300 d以内;③随着平均单簇用液规模增加,压窜影响程度趋于增强,建议根据母井生产时间和井间位置关系,针对性优化单簇用液规模;④对于贯穿型天然裂缝发育的井段,在设计和施工过程中需要严格控制用液规模、优化射孔参数和施工排量,避免压窜。现场试验表明,该研究成果对页岩气减小井间压窜影响具有指导意义。
中图分类号:
何乐,袁灿明,龚蔚. 页岩气井间压窜影响因素分析和防窜对策[J]. 油气藏评价与开发, 2020, 10(5): 63-69.
HE Le,YUAN Canming,GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas[J]. Reservoir Evaluation and Development, 2020, 10(5): 63-69.
表1
压窜井影响因素原始数据"
x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
0.072 | 133 | 1 816 | 605 | 12.0 | 3 | 48 | 400 | 1 | 5 | 2 735 |
4.220 | 7 | 3 226 | 538 | 10.2 | 6 | 96 | 400 | 1 | 5 | 2 870 |
9.210 | 1 | 3 092 | 515 | 10.4 | 6 | 96 | 400 | 1 | 4 | 2 800 |
0.049 | 596 | 1 958 | 392 | 13.0 | 5 | 80 | 500 | 2 | 3 | 2 678 |
0.080 | 88 | 2 200 | 733 | 12.0 | 3 | 48 | 450 | 2 | 5 | 2 432 |
0.447 | 61 | 1 980 | 660 | 12.2 | 3 | 48 | 500 | 1 | 1 | 2 724 |
0.033 | 885 | 1 886 | 629 | 13.3 | 3 | 48 | 350 | 1 | 4 | 2 505 |
0.004 | 1 037 | 2 047 | 682 | 13.4 | 3 | 48 | 900 | 1 | 5 | 2 478 |
0.002 | 1 022 | 1 910 | 637 | 14.1 | 3 | 48 | 600 | 2 | 5 | 2 582 |
0.023 | 1 033 | 1 897 | 474 | 13.5 | 4 | 48 | 900 | 2 | 2 | 2 694 |
表2
压窜井影响因素原始数据标准化处理"
y0 | y1 | y2 | y3 | y4 | y5 | y6 | y7 | y8 | y9 | y10 |
---|---|---|---|---|---|---|---|---|---|---|
0.007 8 | 0.128 3 | 0.562 9 | 0.376 2 | 0.794 7 | 0.500 0 | 0.500 0 | 0.444 4 | 0.250 0 | 1.000 0 | 0.766 5 |
0.458 2 | 0.006 8 | 1.000 0 | 0.334 6 | 0.675 5 | 1.000 0 | 1.000 0 | 0.444 4 | 0.250 0 | 1.000 0 | 0.804 4 |
1.000 0 | 0.001 0 | 0.958 5 | 0.320 3 | 0.688 7 | 1.000 0 | 1.000 0 | 0.444 4 | 0.250 0 | 0.800 0 | 0.784 8 |
0.005 3 | 0.574 7 | 0.606 9 | 0.243 8 | 0.860 9 | 0.833 3 | 0.833 3 | 0.555 6 | 0.500 0 | 0.600 0 | 0.750 6 |
0.008 7 | 0.084 9 | 0.682 0 | 0.455 8 | 0.794 7 | 0.500 0 | 0.500 0 | 0.500 0 | 0.500 0 | 1.000 0 | 0.681 6 |
0.048 5 | 0.058 8 | 0.613 8 | 0.410 4 | 0.807 9 | 0.500 0 | 0.500 0 | 0.555 6 | 0.250 0 | 0.200 0 | 0.763 5 |
0.003 6 | 0.853 4 | 0.584 6 | 0.391 2 | 0.880 8 | 0.500 0 | 0.500 0 | 0.388 9 | 0.250 0 | 0.800 0 | 0.702 1 |
0.000 4 | 1.000 0 | 0.634 5 | 0.424 1 | 0.887 4 | 0.500 0 | 0.500 0 | 1.000 0 | 0.250 0 | 1.000 0 | 0.694 5 |
0.000 2 | 0.985 5 | 0.592 1 | 0.396 1 | 0.933 8 | 0.500 0 | 0.500 0 | 0.666 7 | 0.500 0 | 1.000 0 | 0.723 7 |
0.002 5 | 0.996 1 | 0.588 0 | 0.294 8 | 0.894 0 | 0.666 7 | 0.500 0 | 1.000 0 | 0.500 0 | 0.400 0 | 0.755 0 |
表3
压窜井影响因素的关联系数"
x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | x9 | x10 |
---|---|---|---|---|---|---|---|---|---|---|
1.000 0 | 0.805 8 | 0.473 8 | 0.575 7 | 0.388 5 | 0.503 9 | 0.503 9 | 0.533 8 | 0.673 6 | 0.335 0 | 0.397 2 |
1.000 0 | 0.525 5 | 0.479 9 | 0.801 7 | 0.697 0 | 0.479 9 | 0.479 9 | 0.973 2 | 0.706 0 | 0.479 9 | 0.590 8 |
1.000 0 | 0.333 5 | 0.923 3 | 0.423 8 | 0.616 3 | 1.000 0 | 1.000 0 | 0.473 6 | 0.399 9 | 0.714 2 | 0.699 0 |
1.000 0 | 0.467 5 | 0.453 8 | 0.677 0 | 0.368 8 | 0.376 5 | 0.376 5 | 0.476 0 | 0.502 6 | 0.456 7 | 0.401 5 |
1.000 0 | 0.867 8 | 0.426 1 | 0.527 8 | 0.388 7 | 0.504 3 | 0.504 3 | 0.504 3 | 0.504 3 | 0.335 2 | 0.426 2 |
1.000 0 | 0.979 8 | 0.469 3 | 0.580 1 | 0.397 0 | 0.525 5 | 0.525 5 | 0.496 5 | 0.712 7 | 0.767 5 | 0.411 5 |
1.000 0 | 0.370 4 | 0.462 5 | 0.563 3 | 0.363 0 | 0.501 7 | 0.501 7 | 0.564 7 | 0.669 8 | 0.385 6 | 0.417 1 |
1.000 0 | 0.333 4 | 0.440 8 | 0.541 3 | 0.360 4 | 0.500 2 | 0.500 2 | 0.333 4 | 0.667 0 | 0.333 4 | 0.418 7 |
1.000 0 | 0.336 6 | 0.457 9 | 0.558 0 | 0.348 7 | 0.500 1 | 0.500 1 | 0.428 6 | 0.500 1 | 0.333 3 | 0.408 6 |
1.000 0 | 0.334 7 | 0.460 5 | 0.631 0 | 0.359 3 | 0.429 4 | 0.501 2 | 0.333 8 | 0.501 2 | 0.557 0 | 0.399 1 |
[1] | 赵文智, 贾爱林, 位云生, 等. 中国页岩气勘探开发进展及发展展望[J]. 中国石油勘探, 2020,25(1):31-44. |
ZHAO W Z, JIA A L, WEI Y S, et al. Progress in shale gas exploration in China and prospects for future development[J]. China Petroleum Exploration, 2020,25(1):31-44. | |
[2] | 郑有成, 范宇, 雍锐, 等. 页岩气密切割分段+高强度加砂压裂新工艺[J]. 天然气工业, 2019,39(10):76-81. |
ZHENG Y C, FAN Y, YONG R, et al. A new fracturing technology of intensive stage+High-intensity proppant injection for shale gas reservoirs[J]. Natural Gas Industry, 2019,39(10):76-81. | |
[3] | AJANI A A, KELKAR M G. Interference study in shale plays[C]// paper SPE-151045-MS presented at the SPE Hydraulic Fracturing Technology Conference, 6-8 February 2012, The Woodlands, Texas, USA. |
[4] | KING G E, RAINBOLT M F, SWANSON C. Frac hit induced production losses evaluating root causes, damage location, possible prevention methods and success of remedial treatments[C]// paper SPE-187192-MS presented at the SPE Annual Technical Conference and Exhibition, 9-11 October 2017, San Antonio, Texas, USA. |
[5] | MARONGIU-PORCU M, LEE D, SHAN D, et al. Advanced modeling of interwell-fracturing interference: An eagle ford shale-oil study-Refracturing[C]// paper SPE-179177-MS presented at the SPE Hydraulic Fracturing Technology Conference, 9-11 February 2016, The Woodlands, Texas, USA. |
[6] | PARYANI M, SMAOUI R, POLUDASU S, et al. Adaptive Fracturing to Avoid Frac Hits and Interference: A Wolfcamp Shale Case Study[C]// paper SPE-185044-MS presented at the SPE Unconventional Resources Conference, 15-16 February 2017, Calgary, Alberta, Canada. |
[7] | 林彦兵, 胡艾国, 陈付虎, 等. 红河油田水平井压窜原因分析及防窜对策建议[J]. 油气藏评价与开发, 2013,3(4):56-61. |
LIN Y B, HU A G, CHEN F H, et al. Horizontal well fracturing channeling cause analysis and channeling prevention countermeasures in Honghe Oilfield[J]. Reservoir Evaluation and Development, 2013,3(4):56-61. | |
[8] | 滕小兰, 邱玲. 调整井压裂井间干扰实例分析及技术对策[J]. 石油钻采工艺, 2011,33(2):88-90. |
TENG X L, QIU L. Example analysis and technical measures for wells interference in adjustment well fracturing[J]. Oil Drilling & Production Technology, 2011,33(2):88-90. | |
[9] | 陈剑, 郭建春, 兰芳. 加密井井间干扰影响因素及对邻井产能的影响[J]. 中外能源, 2015,20(4):54-57. |
CHEN J, GUO J C, LAN F. Influencing factors and effect on adjacent well productivity ofinterwell interference in infilled wells[J]. Sino-Global Energy, 2015,20(4):54-57. | |
[10] | 唐云, 康毅力, 王永恒, 等.致密砂岩油藏压窜井产量影响因素[A].中国力学大会-2015论文摘要集[C].上海:中国力学学会、上海交通大学: 2015. |
TANG Y, KANG Y L, WANG Y H, et al. The Influencing factors on Production of Frac Hit Well in Tight sand Oil Reservoirs[A]. CSTAM, Shanghai Jiao Tong University. CCTAM 2015[C]. CSTAM, Shanghai Jiao Tong University: CSTAM, 2015. | |
[11] | 李继庆, 刘曰武, 黄灿, 等. 页岩气水平井试井模型及井间干扰特征[J]. 岩性油气藏, 2018,30(6):138-144. |
LI J Q, LIU Y W, HUANG C, et al. Multi-stage fracturing horizontal well interference test model and its application[J]. Lithologic Reservoirs, 2018,30(6):138-144. | |
[12] | 位云生, 王军磊, 齐亚东, 等. 页岩气井网井距优化[J]. 天然气工业, 2018,38(4):129-137. |
WEI Y S, WANG J L, QI Y D, et al. Optimization of shale gas well pattern and spacing[J]. Natural Gas Industry, 2018,38(4):129-137. | |
[13] | 郭建林, 贾爱林, 贾成业, 等. 页岩气水平井生产规律[J]. 天然气工业, 2019,39(10):53-58. |
GUO J L, JIA A L, JIA C Y, et al. Production laws of shale-gas horizontal wells[J]. Natural Gas Industry, 2019,39(10):53-58. | |
[14] | 肖寒. 威远区块页岩气水平井基于灰色关联分析的产能评价方法[J]. 油气井测试, 2018,27(4):73-78. |
XIAO H. Production evaluation method based on grey correlation analysis for shale gas horizontal wells in Weiyuan Block[J]. Well Testing, 2018,27(4):73-78. | |
[15] | 聂玲, 周德胜, 郭向东, 等. 利用灰色关联法分析低渗气藏压裂影响因素[J]. 断块油气田, 2013,20(1):133-136. |
NIE L, ZHOU D S, GUO X D, et al. Analysis on influencing factors of postfracture response in low permeability gas reservoir with gray correlation method[J]. Fault-Block Oil & Gas Field, 2013,20(1):133-136. | |
[16] | 曲占庆, 黄德胜, 毛登周, 等. 基于灰色关联法的低渗气藏压裂效果影响因素分析[J]. 西北大学学报(自然科学版), 2014,44(4):603-609. |
QU Z Q, HUANG D S, MAO D Z, et al. The influencing factors of fracturing effects in low permeability gas reservoir with gray correlation method[J]. Journal of Northwest University(Natural Science Edition), 2014,44(4):603-609. | |
[17] | 梁承春, 王国壮, 解庆阁, 等. 解水锁技术在超低渗油藏分段压裂水平井中的应用[J]. 断块油气田, 2014,21(5):652-655. |
LIANG C C, WANG G Z, JIE Q G, et al. Application of water-unblocking technology in staged fracturing horizontal wells of untra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2014,21(5):652-655. | |
[18] | 曾庆磊, 庄茁, 柳占立, 等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟[J]. 计算力学学报, 2016,33(4):643-648. |
ZENG Q L, ZHUANG Z, LIU Z L, et al. Fully coupled modeling for multiple clusters growth of hydraulic fractures in shale[J]. Chinese Journal of Computational Mechanics, 2016,33(4):643-648. | |
[19] | 周彤, 陈铭, 张士诚, 等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业, 2020,40(3):82-91. |
ZHOU T, CHEN M, ZHANG S C, et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field[J]. Natural Gas Industry, 2020,40(3):82-91. | |
[20] | 柳占立, 王涛, 高岳, 等. 页岩水力压裂的关键力学问题[J]. 固体力学学报, 2016,37(1):34-49. |
LIU Z L, WANG T, GAO Y, et al. The key mechanical problems on hydraulic fracture in shale[J]. Chinese Journal of Solid Mechanics, 2016,37(1):34-49. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[5] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[6] | 孔祥伟,谢昕,王存武,时贤. 基于灰色关联方法的深层煤层气井压后产能影响地质工程因素评价 [J]. 油气藏评价与开发, 2023, 13(4): 433-440. |
[7] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[8] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[9] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[10] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[11] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[12] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[13] | 李小刚, 何建冈, 杨兆中, 易良平, 黄刘科, 杜博迪, 张景强. 基于离散元法的压裂裂缝特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 348-357. |
[14] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[15] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
|