油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (3): 487-495.doi: 10.13809/j.cnki.cn32-1825/te.2022.03.011
收稿日期:
2021-08-20
出版日期:
2022-06-26
发布日期:
2022-06-24
作者简介:
张庆(1969—),男,高级工程师,从事地质勘探、油气合作开发技术方面的研究。地址:四川省成都市成华区猛追湾街6号,邮政编码:610056。E-mail: ZHANG Qing1(),HE Feng1,HE Youwei2
Received:
2021-08-20
Online:
2022-06-26
Published:
2022-06-24
摘要:
页岩气藏井间干扰严重制约气井生产,井间干扰程度评价与预测对页岩气高效开发具有重要意义。现有研究主要聚焦页岩气井间干扰现象、生产动态特征以及数值模拟参数优化等方面,但页岩气井间干扰程度定量评价及预测方面的研究较少,且参数体系不全,难以客观评价页岩气井间干扰程度。因此,采用机器学习方法综合考虑地质参数、压裂参数及生产参数,对A页岩气藏井间干扰程度进行评价及预测。先对初始数据进行数据处理,提高数据质量,然后基于处理后的数据,应用聚类分析及随机森林算法评价及预测Y页岩气井间干扰程度。结果表明:A页岩气藏中井间干扰程度低、中、高的井数占比分别为25.93 %、37.03 %、37.04 %,其中压裂因素对A页岩气藏井间干扰程度评价结果影响最大。调参后的页岩气井间干扰程度预测结果达到92.07 %,表明所建立的预测模型可应用于实际页岩气井间干扰程度预测,且模型精确度较高,为页岩气井井间干扰量化评价及预测提供了一种有效手段。
中图分类号:
张庆,何封,何佑伟. 基于机器学习的页岩气井井间干扰评价及预测[J]. 油气藏评价与开发, 2022, 12(3): 487-495.
ZHANG Qing,HE Feng,HE Youwei. Well interference evaluation and prediction of shale gas wells based on machine learning[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 487-495.
表1
A页岩气藏部分井多重插补结果"
井号 | 总含气量(m3/t) | 压裂段数 | 压裂簇数 | 改造体积(104 m3) | 水平段长(m) | 压裂段长(m) | 入地液量(m3) | 入地砂量(t) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.04 | 28 | 77 | 3 847.69 | 1 500 | 1 686 | 54 411.00 | 2 442.40 | ||||||
2 | 3.50 | 12 | 38 | 1 974.63 | 1 786 | 747 | 22 100.12 | 2 815.57 | ||||||
3 | 5.51 | 15 | 41 | 4 801.09 | 1 500 | 1 087 | 29 988.88 | 2 790.85 | ||||||
4 | 3.90 | 22 | 64 | 4 760.67 | 1 800 | 1 689 | 38 072.96 | 2 784.36 | ||||||
5 | 6.22 | 33 | 99 | 8 188.04 | 2 200 | 2 154 | 65 063.00 | 3 674.25 | ||||||
6 | 4.93 | 30 | 93 | 5 848.50 | 2 000 | 1 972 | 54 017.06 | 3 328.43 | ||||||
7 | 4.85 | 31 | 99 | 5 041.82 | 2 000 | 1 974 | 53 143.52 | 3 302.30 | ||||||
8 | 4.53 | 31 | 93 | 5 947.01 | 2 000 | 1 970 | 52 443.90 | 2 860.20 | ||||||
井号 | 渗透率 (10-6μm2) | 孔隙度 | 平均累产气量 (m3/d) | 最小水平主应力 (MPa) | 脆性矿物含量 (%) | 黏土矿物含量 (%) | 井间干扰影响程度 (%) | |||||||
1 | 0.28 | 6.09 | 73 553.62 | 71.10 | 64.75 | 19.82 | 84 | |||||||
2 | 0.30 | 6.11 | 36 020.87 | 68.94 | 69.52 | 15.85 | 85 | |||||||
3 | 0.28 | 5.60 | 31 608.30 | 71.50 | 55.42 | 10.47 | 100 | |||||||
4 | 0.29 | 5.70 | 128 536.00 | 68.10 | 59.80 | 20.60 | 79 | |||||||
5 | 0.29 | 5.83 | 262 288.20 | 70.36 | 74.52 | 22.25 | 91 | |||||||
6 | 0.29 | 6.03 | 350 960.10 | 67.70 | 68.01 | 20.55 | 47 | |||||||
7 | 0.48 | 6.20 | 221 543.30 | 69.65 | 71.14 | 18.40 | 89 | |||||||
8 | 0.29 | 6.08 | 30 792.40 | 69.45 | 72.63 | 19.70 | 54 |
表2
影响因子与备选因素对应系数矩阵"
参数 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 |
---|---|---|---|---|---|---|---|---|
平均累产气量 | 0.320 333 | 0.101 433 | -0.332 990 | -0.100 060 | 0.478 627 | -0.050 270 | 0.037 667 | 0.424 910 |
压裂段数 | 0.416 403 | -0.080 640 | 0.124 939 | 0.171 114 | -0.110 600 | -0.060 660 | 0.400 095 | -0.017 620 |
压裂级数 | 0.440 225 | -0.041 560 | 0.351 620 | 0.115 790 | -0.277 470 | -0.030 570 | 0.221 530 | 0.104 619 |
改造体积 | 0.178 355 | -0.244 070 | -0.127 860 | 0.073 144 | 0.357 113 | -0.112 400 | 0.068 482 | -0.548 110 |
水平段长 | 0.303 558 | 0.022 013 | -0.562 230 | -0.098 540 | -0.323 940 | 0.393 068 | -0.054 400 | 0.126 982 |
压裂段长 | 0.360 660 | 0.010 346 | -0.035 770 | 0.138 368 | 0.047 098 | -0.041 400 | 0.114 013 | -0.306 540 |
入地液量 | 0.346 230 | -0.327 860 | 0.342 088 | -0.108 870 | 0.159 753 | 0.127 573 | -0.223 240 | 0.236 313 |
入地砂量 | 0.105 936 | -0.166 550 | 0.264 322 | -0.236 370 | 0.329 727 | 0.285 875 | -0.435 300 | -0.174 210 |
渗透率 | 0.104 210 | 0.208 533 | -0.005 220 | -0.097 980 | 0.029 974 | 0.608 051 | 0.034 170 | -0.030 270 |
孔隙度 | 0.131 329 | 0.788 948 | 0.290 244 | -0.313 310 | 0.150 284 | -0.102 290 | 0.091 473 | -0.083 900 |
总含气量 | 0.145 061 | 0.322 258 | -0.174 330 | 0.677 641 | 0.194 926 | -0.020 280 | -0.347 040 | -0.104 310 |
最小水平主应力 | -0.064 370 | 0.070 389 | 0.306 970 | 0.459 899 | -0.086 270 | 0.114 290 | -0.257 370 | 0.330 922 |
脆性矿物 | 0.223 720 | 0.101 532 | -0.017 020 | -0.169 200 | -0.493 420 | -0.128 880 | -0.495 090 | -0.329 260 |
黏土矿物 | 0.204 261 | -0.032 390 | -0.141 630 | -0.195 640 | -0.019 610 | -0.561 910 | -0.296 870 | 0.273 371 |
表3
页岩气井井间干扰程度影响因子聚类中心(标准化)"
等级 | Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | 井间干扰程度 |
---|---|---|---|---|---|---|---|---|---|
等级低 | 0.585 049 | 0.218 316 | -0.175 240 | 0.034 695 | 0.071 724 | 0.052 852 | -0.004 221 | -0.034 615 | 0.474 394 |
等级中 | -0.644 967 | -0.055 477 | -0.055 778 | 0.016 812 | 0.055 988 | 0.035 766 | -0.016 125 | 0.004 557 | 0.769 811 |
等级高 | 0.235 432 | -0.097 344 | 0.178 446 | -0.041 099 | -0.106 195 | -0.072 763 | 0.019 169 | 0.019 674 | 0.905 660 |
[1] | 董大忠, 施振生, 管全中, 等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4):67-76. |
DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng-Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67-76. | |
[2] | 胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及“甜点”分布规律研究[J]. 非常规油气, 2021, 8(5):34-44. |
HU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng-Longmaxi Formation, southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5):34-44. | |
[3] | 辛翠平, 白慧芳, 张磊, 等. 不同裂缝形态页岩气多级压裂水平井产能预测模型应用研究[J]. 非常规油气, 2020, 7(3):65-71. |
XIN Cuiping, BAI Huifang, ZHANG Lei, et al. Application study of multistage fracturing horizontal well production forecasting models for shale gas with different fracture forms[J]. Unconventional Oil & Gas, 2020, 7(3): 65-71. | |
[4] | GUO X Y, WU K, KILLOUGH J, et al. Understanding the mechanism of interwell fracturing interference with reservoir/geomechanics/fracturing modeling in eagle ford shale[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3):842-860. |
[5] | 郭旭洋, 金衍, 黄雷, 等. 页岩油气藏水平井井间干扰研究现状和讨论[J]. 石油钻采工艺, 2021, 43(3):348-367. |
GUO Xuyang, JIN Yan, HUANG Lei, et al. Review and discussion of the study of interwell interference in shale oil and shale gas reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 348-367. | |
[6] | 陈京元, 位云生, 王军磊, 等. 页岩气井间干扰分析及井距优化[J]. 天然气地球科学, 2021, 32(7):931-940. |
CHEN Jingyuan, WEI Yunsheng, WANG Junlei, et al. Interwell-production interference and well spacing optimization in shale gas reservoir[J]. Natural Gas Geoscience, 2021, 32(7): 931-940. | |
[7] | 曾庆磊, 庄茁, 柳占立, 等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟[J]. 计算力学学报, 2016, 33(4):643-648. |
ZENG Qinglei, ZHUANG Zhuo, LIU Zhanli, et al. Fully coupled simulation of multi-cluster fracture propagation in shale hydraulic fracturing[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-648. | |
[8] | SARDINHA C, PETR C, LEHMANN J, et al. Determining interwell connectivity and reservoir complexity through frac pressure hits and production interference analysis[C]// Paper SPE-171628-MS presented at the SPE/CSUR Unconventional Resources Conference-Canada, Calgary, Alberta, Canada, September 2014. |
[9] | SULLIVAN M, ZANGANEH B, SPRINGER A, et al. Post-fracture pressure decay: A novel (and free) stage-level assessment method[C]// Paper URTEC-2019-970-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, July 2019. |
[10] | KUMAR A, SETH P, SHRIVASTAVA K, et al. Well interference diagnosis through integrated analysis of tracer and pressure interference tests[C]// Paper URTEC-2901827-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018. |
[11] | JI L J, SEN V, MIN K S, et al. Numerical simulation of DFITs within a coupled reservoir flow and geomechanical simulator-insights into completions optimization[C]// Paper SPE-194352-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA, February 2019. |
[12] | 王磊, 杨春和, 郭印同, 等. 基于室内水力压裂试验的水平井起裂模式研究[J]. 岩石力学与工程学报, 2015, 34(S2):3624-3632. |
WANG Lei, YANG Chunhe, GUO Yintong, et al. Investigation on fracture initiation modes of horizontal wells based on laboratory hydraulic fracturing test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3624-3632. | |
[13] | 王军磊, 贾爱林, 位云生, 等. 基于多井模型的压裂参数—开发井距系统优化[J]. 石油勘探与开发, 2019, 46(5):981-992. |
WANG Junlei, JIA Ailin, WEI Yunsheng, et al. Optimization work-flow for stimulation-well spacing designs in a multiwell pad[J]. Petroleum Exploration and Development, 2019, 46(5): 981-992. | |
[14] | 雍锐, 常程, 张德良, 等. 地质—工程—经济一体化页岩气水平井井距优化——以国家级页岩气开发示范区宁209井区为例[J]. 天然气工业, 2020, 40(7):42-48. |
YONG Rui, CHANG Cheng, ZHANG Deliang, et al. Optimization of shale-gas horizontal well spacing based on geology-engineering-economy integration: A case study of Well Block Ning 209 in the National Shale Gas Development Demonstration Area[J]. Natural Gas Industry, 2020, 40(7): 42-48. | |
[15] | HE Y W, GUO J C, TANG Y, et al. Interwell fracturing interference evaluation of multi-well pads in shale gas reservoirs: A case study in WY Basin[C]// Paper SPE-201694-MS presented at the SPE Annual Technical Conference and Exhibition, Virtual, October 2020. |
[16] | 位云生, 王军磊, 齐亚东, 等. 页岩气井网井距优化[J]. 天然气工业, 2018, 38(4):129-137. |
WEI Yunsheng, WANG Junlei, QI Yadong, et al. Optimization of shale gas well pattern and spacing[J]. Natural Gas Industry, 2018, 38(4): 129-137. | |
[17] | 李维, 代锋, 左星. 存在井间干扰的页岩气井精细控压技术应用[J]. 钻采工艺, 2019, 42(5):103-105. |
LI Wei, DAI Feng, ZUO Xing. Application of fine pressure control technology in shale gas wells with inter-well interference[J]. Drilling & Production Technology, 2019, 42(5): 103-105. | |
[18] | 钟思存, 何嘉, 赵素惠, 等. 基于概率模拟方法的页岩气井间干扰影响研究[C]// 第31届全国天然气学术年会(2019). 合肥: 中国石油学会天然气专业委员会, 2019:6. |
ZHONG Sicun, HE Jia, ZHAO Suhui, et al. Research on well interference of shale gas based on probability simulation[C]// The 31st National Natural Gas Academic Annual Conference (2019). Hefei: Institute of Petroleum and Gas Professional Committee of China, 2019: 6. | |
[19] | 严子铭, 王涛, 柳占立, 等. 基于机器学习的页岩气采收率预测方法[J]. 固体力学学报, 2021, 42(3):221-232. |
YAN Ziming, WANG Tao, LIU Zhanli, et al. Machine-learning-based prediction methods on shale gas recovery[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 221-232. | |
[20] | 钱辰, 杨少春, 许子君. 基于机器学习的页岩气“甜点”评价及其应用综述[C]// 油气田勘探与开发国际会议论文集. 西安: 西安石油大学, 2019:11. |
QIAN Chen, YANG Shaochun, XU Zijun. Review of evaluation of shale gas sweet spots and its application based on machine learning[C]// International Field Exploration and Development Conference. Xi’an: Xi’an Shiyou University, 2019:11. | |
[21] | 李菊花, 陈晨, 肖佳林. 基于随机森林算法的页岩气多段压裂井产量预测[J]. 长江大学学报(自然科学版), 2020, 17(4):34-38. |
LI Juhua, CHEN Chen, XIAO Jialin. Yield production of shale gas multi-stage fracturing wells based on random forest algorithm[J]. Journal of Yangtze University (Natural Science Edition), 2020, 17(4): 34-38. | |
[22] | 孙艺涵. 基于机器学习的页岩有机质含量预测方法研究[D]. 北京: 中国石油大学(北京), 2019. |
SUN Yihan. Research on prediction method of total organic carbon in shale based on machine learning[D]. Beijing:China University of Petroleum(Beijing), 2019. | |
[23] | 周小金, 杨洪志, 范宇, 等. 川南页岩气水平井井间干扰影响因素分析[J]. 中国石油勘探, 2021, 26(2):103-112. |
ZHOU Xiaojin, YANG Hongzhi, FAN Yu, et al. Analysis of factors affecting frac hits in horizontal shale gas wells in the southern Sichuan Basin[J]. China Petroleum Exploration, 2021, 26(2): 103-112. | |
[24] | 黄红良. 多井条件下页岩气水平井产能影响因素研究[D]. 北京: 中国石油大学(北京), 2017. |
HUANG Hongliang. Study on influence factors of hydraulic fractured horizontal well productivity in shale gas reservoir under multi-well condition[D]. Beijing: China University of Petroleum(Beijing), 2017. | |
[25] | 苏晓眉, 张涛, 李玉飞, 等. 基于K-Means聚类算法的沉砂卡钻预测方法研究[J]. 钻采工艺, 2021, 44(3):5-9. |
SU Xiaomei, ZHANG Tao, LI Yufei, et al. Research on the sticking prediction method based on K-Means clustering algorithm[J]. Drilling & Production Technology, 2021, 44(3): 5-9. | |
[26] | 王光宇, 宋建国, 徐飞, 等. 不平衡样本集随机森林岩性预测方法[J]. 石油地球物理勘探, 2021, 56(4):679-687. |
WANG Gangyu, SONG Jianguo, XU Fei, et al. Random forest lithology prediction method based on unbalanced sample set[J]. Oil Geophysical Prospecting, 2021, 56(4): 679-687. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[5] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[6] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[7] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[8] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[9] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[10] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[11] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[12] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[13] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
[14] | 赵仁文,肖佃师,卢双舫,周能武. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比——以徐家围子断陷沙河子组和四川盆地龙马溪组为例 [J]. 油气藏评价与开发, 2023, 13(1): 52-63. |
[15] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
|