[1] |
邢利钧. 绿色能源的合理利用与开发[J]. 绿色环保建材, 2021, 25(3): 50-51.
|
|
XING Lijun. Reasonable utilization and development of green energy[J]. Green Environmental Protection Building Materials, 2021, 25(3): 50-51.
|
[2] |
雷超, 李韬. 碳中和背景下氢能利用关键技术及发展现状[J]. 发电技术, 2021, 42(2): 207-217.
doi: 10.12096/j.2096-4528.pgt.20015
|
|
LEI Chao, LI Tao. Key technologies and development status of hydrogen energy utilization under the background of carbon neutrality[J]. Power Generation Technology, 2021, 42(2): 207-217.
doi: 10.12096/j.2096-4528.pgt.20015
|
[3] |
XU Y S, WANG X W, SHEN S L, et al. Distribution characteristics and utilization of shallow geothermal energy in China[J]. Energy and Buildings, 2020, 229: 110479.
doi: 10.1016/j.enbuild.2020.110479
|
[4] |
LUO Y Q, GUO H S, MEGGERS F, et al. Deep coaxial borehole heat exchanger: Analytical modeling and thermal analysis[J]. Energy, 2019, 185: 1298-1313.
doi: 10.1016/j.energy.2019.05.228
|
[5] |
LUO Y Q, YU J H, YAN T, et al. Improved analytical modeling and system performance evaluation of deep coaxial borehole heat exchanger with segmented finite cylinder-source method[J]. Energy and Buildings, 2020, 212: 109829.
doi: 10.1016/j.enbuild.2020.109829
|
[6] |
LUO Y Q, XU G H, CHENG N. Proposing stratified segmented finite line source (SS-FLS) method for dynamic simulation of medium-deep coaxial borehole heat exchanger in multiple ground layers[J]. Renewable Energy, 2021, 179: 604-624.
doi: 10.1016/j.renene.2021.07.086
|
[7] |
LI C, JIANG C, GUAN Y L. An analytical model for heat transfer characteristics of a deep-buried U-bend pipe and its heat transfer performance under different deflecting angles[J]. Energy, 2022, 244: 122682.
doi: 10.1016/j.energy.2021.122682
|
[8] |
LI C, JIANG C, GUAN Y L, et al. Development and applicability of heat transfer analytical model for coaxial-type deep-buried pipes[J]. Energy, 2022, 255: 124533.
doi: 10.1016/j.energy.2022.124533
|
[9] |
FANG L, DIAO N R, SHAO Z K, et al. A computationally efficient numerical model for heat transfer simulation of deep borehole heat exchangers[J]. Energy and Buildings, 2018, 167: 79-88.
doi: 10.1016/j.enbuild.2018.02.013
|
[10] |
李思奇, 赵军, 李扬, 等. 闭式中深层井下换热数值模拟与内管分段绝热影响研究[J]. 太阳能学报, 2020, 41(11): 369-374.
|
|
LI Siqi, ZHAO Jun, LI Yang, et al. Numerical simulation of closed loop medium-deep downhole heat exchange: a focus on influence of segmented insulation on central pipe[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 369-374.
|
[11] |
CAI W L, WANG F H, CHEN C F, et al. Long-term performance evaluation for deep borehole heat exchanger array under different soil thermal properties and system layouts[J]. Energy, 2022, 241: 122937.
doi: 10.1016/j.energy.2021.122937
|
[12] |
CAI W L, WANG F H, CHEN S, et al. Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: A project-based study[J]. Applied Energy, 2021, 289: 116590.
doi: 10.1016/j.apenergy.2021.116590
|
[13] |
HUANG Y B, ZHANG Y J, XIE Y Y, et al. Long-term thermal performance analysis of deep coaxial borehole heat exchanger based on field test[J]. Journal of Cleaner Production, 2021, 278: 123396.
doi: 10.1016/j.jclepro.2020.123396
|
[14] |
王兴, 李超, 官燕玲, 等. 竖向U型深埋管建筑供暖连续及间歇运行的现场实验[J]. 区域供热, 2018, 2(3): 8-12.
|
|
WANG Xing, LI Chao, GUAN Yanling, et al. In-situ experiment of continuous and intermittent operation of vertical U-bend deep-buried pipe to supply heat in buildings[J]. District Heating, 2018, 2(3): 8-12.
|
[15] |
PAN A Q, LU L, CUI P, et al. A new analytical heat transfer model for deep borehole heat exchangers with coaxial tubes[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1056-1065.
doi: 10.1016/j.ijheatmasstransfer.2019.07.041
|
[16] |
HU X C, BANKS J, WU L P, et al. Numerical modeling of a coaxial borehole heat exchanger to exploit geothermal energy from abandoned petroleum wells in Hinton, Alberta[J]. Renewable Energy, 2020, 148: 1110-1123.
doi: 10.1016/j.renene.2019.09.141
|
[17] |
BÄR K, RÜHAAK W, WELSCH B, et al. Seasonal high temperature heat storage with medium deep borehole heat exchangers[J]. Energy Procedia, 2015, 76: 351-360.
doi: 10.1016/j.egypro.2015.07.841
|
[18] |
官燕玲, 张小刚, 梁草茹, 等. 西安地区土壤源热泵地埋管换热的岩土影响因素区域分布[J]. 西北大学学报(自然科学版), 2016, 46(4): 565-572.
|
|
GUAN Yanling, ZHANG Xiaogang, LIANG Caoru, et al. Regional distribution of rock-soil influences for ground heat exchange of ground-source heat pump in Xi’an Area[J]. Journal of Northwest University (Natural Science Edition), 2016, 46(4): 565-572.
|
[19] |
任建喜, 刘嘉辉, 高虎艳, 等. 西安地铁沿线地层地温春季分布规律观测研究[J]. 铁道工程学报, 2012, 29(3): 101-106.
|
|
REN Jianxi, LIU Jiahui, GAO Huyan, et al. Study on distribution law and observation of ground temperature in spring along Xi’an subway[J]. Journal of Railway Engineering Society, 2012, 29(3): 101-106.
|
[20] |
LI C, GUAN Y L, LIU J H, et al. Heat transfer performance of a deep ground heat exchanger for building heating in long-term service[J]. Renewable Energy, 2020, 166: 20-34.
doi: 10.1016/j.renene.2020.11.111
|
[21] |
饶松, 姜光政, 高雅洁, 等. 渭河盆地岩石圈热结构与地热田热源机理[J]. 地球物理学报, 2016, 59(6): 2176-2190.
|
|
RAO Song, JIANG Guangzheng, GAO Yajie, et al. The thermal structure of the lithosphere and heat source mechanism of geothermal field in Weihe Basin[J]. Chinese Journal of Geophysics, 2016, 59(6): 2176-2190.
|