油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (6): 869-876.doi: 10.13809/j.cnki.cn32-1825/te.2022.06.005
收稿日期:
2022-07-01
出版日期:
2022-12-26
发布日期:
2022-12-02
通讯作者:
张立松
E-mail:1277709783@qq.com;lisongzhang1982@163.com
作者简介:
陈劭颖(1996—),女,在读硕士研究生,从事岩石力学相关工作。地址:山东省青岛市黄岛区中国石油大学(华东),邮政编码:266555。E-mail:基金资助:
CHEN Shaoying(),WANG Wei,YANG Qingchun,ZHANG Lisong()
Received:
2022-07-01
Online:
2022-12-26
Published:
2022-12-02
Contact:
ZHANG Lisong
E-mail:1277709783@qq.com;lisongzhang1982@163.com
摘要:
针对干热岩储层压裂的热流固耦合模型计算复杂且难以实现大规模多簇缝网压裂模拟的问题,提出了一种干热岩压裂顺序耦合模拟方法,建立了单簇裂缝和多簇缝网的裂缝扩展热流固顺序耦合模型,实现了大规模干热岩多簇缝网压裂的热流固顺序耦合模拟。利用多簇缝网热流固顺序耦合模型讨论了地层温度、干热岩脆性指数、应力场、排量等关键参数对多簇缝网扩展的影响。模拟结果表明:较高的温差、较大的岩石脆性指数以及较大的注入排量能促进缝网的扩展,而较大的应力差不利于缝网的扩展。
中图分类号:
陈劭颖,王伟,杨清纯,张立松. 干热岩储层多簇缝网压裂热流固顺序耦合模型研究[J]. 油气藏评价与开发, 2022, 12(6): 869-876.
CHEN Shaoying,WANG Wei,YANG Qingchun,ZHANG Lisong. Sequential coupling thermal-hydro-mechanical model for multiple cluster of fracturing network fracturing in dry hot rock reservoir[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(6): 869-876.
表1
模型基本参数"
参数名称 | 参数值 | 参数名称 | 参数值 |
---|---|---|---|
模型尺寸(m) | 200×400 | 压裂液黏度(Pa·s) | 0.001 |
网格基本尺寸(m) | 0.5~2.0 | 射孔长度(m) | 16 |
储层渗透率(10-3 μm2) | 0.000 1 | Cohesive单元厚度(m) | 0.001 |
储层孔隙率(%) | 10 | 黏性正则化系数 | 0.000 1 |
压裂液密度(kg/m3) | 1 000 | 原位地应力(MPa) | 50/65/50 |
储层弹性模量(GPa) | 15 | 初始孔隙比 | 0.1 |
储层泊松比 | 0.15 | 压裂液流量(m3/min) | 6 |
损伤强度(MPa) | 6/20/20 | 储层温度(℃) | 100 |
单元损伤位移(m) | 0.001 | 压裂液温度(℃) | 10 |
滤失系数 | 1×10-14 | 注入时间(s) | 4 000 |
[1] |
GHASSEMI A. A review of some rock mechanics issues in geothermal reservoir development[J]. Geotechnical and Geological Engineering, 2012, 30(3): 647-664.
doi: 10.1007/s10706-012-9508-3 |
[2] | 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. |
XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science and Technology Review, 2012, 30(32): 42-45. | |
[3] | 解经宇, 王丹, 李宁, 等. 干热岩压裂建造人工热储发展现状及建议[J]. 地质科技通报, 2022, 41(3): 321-329. |
XIE Jingyu, WANG Dan, LI Ning, et al. Development status and suggestions of hot dry rock hydraulic fracturing for building geothermal reservoirs[J]. Bulletin of Geological Science and Technology, 2022, 41(3): 321-329. | |
[4] |
李龙龙, 姚军, 李阳, 等. 分段多簇压裂水平井产能计算及其分布规律[J]. 石油勘探与开发, 2014, 41(4): 504-508.
doi: 10.1016/S1876-3804(14)60058-6 |
LI Longlong, YAO Jun, LI Yang, et al. Productivity calculation and distribution of staged multi-cluster fractured horizontal wells[J]. Petroleum Exploration and Development, 2014, 41(4): 504-508.
doi: 10.1016/S1876-3804(14)60058-6 |
|
[5] |
TOMAC I, SAUTER M. A review on challenges in the assessment of geomechanical rock performance for deep geothermal reservoir development[J]. Renewable and Sustainable Energy Reviews, 2018, 82(3): 3972-3980.
doi: 10.1016/j.rser.2017.10.076 |
[6] | 胡剑, 苏正, 吴能友, 等. 增强型地热系统热流耦合水岩温度场分析[J]. 地球物理学进展, 2014, 29(3): 1391-1398. |
HU Jian, SU Zheng, WU Nengyou, et al. Analysis on temperature fields of thermal-hydraulic coupled fluid and rock in Enhanced Geothermal System[J]. Progress in Geophysics, 2014, 29(3): 1391-1398. | |
[7] | TOMAC I, GUITERREZ M. Formulation and implementation of coupled forced heat convection and heat conduction in DEM[J]. Acta Geotechnica: An International journal for Geoengineering, 2015, 10(4): 421-433. |
[8] |
TOMAC I, GUITERREZ M. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 92-104.
doi: 10.1016/j.jrmge.2016.10.001 |
[9] | 赵阳升, 王瑞凤, 胡耀青, 等. 高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J]. 岩石力学与工程学报, 2002, 21(12): 1751-1755. |
ZHAO Yangsheng, WANG Ruifeng, HU Yaoqing, et al. 3D numerical simulation for coupled THM of rock matrix-fractured media in heat extraction in HDR[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1751-1755. | |
[10] | 赵延林, 曹平, 赵阳升, 等. 双重介质温度场-渗流场-应力场耦合模型及三维数值研究[J]. 岩石力学与工程学报, 2007, 26(S2): 4024-4031. |
ZHAO Yanlin, CAO Ping, ZHAO Yangsheng, et al. Dual media model for thermo-hydro-mechanical coupling and 3D numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S2): 4024-4031. | |
[11] | 郑鑫, 郭春, 徐建峰, 等. 单裂隙岩体的热流固耦合数值模拟与分析[J]. 现代隧道技术, 2018, 55(S2): 1263-1268. |
ZHENG Xin, GUO Chun, XUN Jianfeng, et al. Numerical simulation and analysis of the coupled Heat-Fluid-Solid in single fractured rock mass[J]. Modern Tunnelling Technology, 2018, 55(S2): 1263-1268. | |
[12] | 张伟, 曲占庆, 郭天魁, 等. 热应力影响下干热岩水压致裂数值模拟[J]. 岩土力学, 2019, 40(5): 2001-2008. |
ZHANG Wei, QU Zhanqing, GUO Tiankui, et al. Numerical simulation of hydraulic fracturing in hot dry rocks under the influence of thermal stress[J]. Rock and Soil Mechanics, 2019, 40(5): 2001-2008. | |
[13] | 张奇. 低渗透页岩层压裂改造的热—流—固耦合机理及应用研究[D]. 徐州: 中国矿业大学, 2019. |
ZHANG Qi. Coupled thermal-hydro-mechanical mechanism and its application for fracturing reform of low permeability shale reservoirs[D]. Xuzhou: China University of Mining and Technology, 2019. | |
[14] |
KOH J, ROSHAN H, RAHMAN S S. A numerical study on the long term thermo-poroelastic effects of cold water injection into naturally fractured geothermal reservoirs[J]. Computers and Geotechnics, 2011, 38(5): 669-682.
doi: 10.1016/j.compgeo.2011.03.007 |
[15] |
WATANABE N, WANG W Q, MCDERMOTT C I, et al. Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media[J]. Computational Mechanics, 2010, 45(4): 263.
doi: 10.1007/s00466-009-0445-9 |
[16] | ROUSSEL N P, SHARMA M M. Optimizing Fracture Spacing and Sequencing in Horizontal-Well Fracturing[J]. SPE Production and Facilities, 2011, 26(2): 173-184. |
[17] | 李宁. 增强型地热系统水力压裂裂缝扩展规律研究[D]. 北京: 中国石油大学(北京), 2020. |
LI Ning. Investigation into hydraulic fracture propagation mechanism in enhanced geothermal system[D]. Beijing: China University of Petroleum(Beijing), 2020. | |
[18] | 王伟, 付豪, 邢林啸, 等. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为[J]. 地球科学, 2021, 46(10): 3509-3519. |
WANG Wei, FU Hao, XING Linxiao, et al. Crack propagation behavior of carbonatite geothermal reservoir rock mass based on extended finite element method[J]. Earth Science, 2021, 46(10): 3509-3519. | |
[19] | 张广明, 刘合, 张劲, 等. 储层流固耦合的数学模型和非线性有限元方程[J]. 岩土力学, 2010, 31(5): 1657-1662. |
ZHANG Guangming, LIU He, ZHANG Jin, et al. Mathematical model and nonlinear finite element equation for reservoir fluid-solid coupling[J]. Rock and Soil Mechanics, 2010, 31(5): 1657-1662. | |
[20] | 衡帅. 页岩气储层水力压裂网状裂缝形成机理研究[D]. 北京: 中国科学院大学, 2015. |
HENG Shuai. Mechanism study of hydraulic fracturing network fracture in shale gas reservoir[D]. Beijing: University of Chinese Academy of Sciences, 2015. | |
[21] |
ZHANG G M, LIU H, ZHANG J, et al. Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture[J]. Journal of Petroleum Science and Engineering, 2010, 72: 310-317.
doi: 10.1016/j.petrol.2010.03.032 |
[22] | 张乐, 张伟, 贺甲元, 等. 急剧冷却作用下高温岩石细观损伤与增渗机制研究[J]. 地球物理学进展, 2022, 37(2): 551-560. |
ZHANG Le, ZHANG Wei, HE Jiayuan, et al. Study on meso damage and seepage enhancement mechanism of high temperature rocks under rapid cooling[J]. Progress in Geophysics, 2022, 37(2): 551-560. | |
[23] | HUCKA V, DAS B. Brittleness determination of rocks by different methods[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1974, 11(10): 389-392. |
[1] | 张连锋,张伊琳,郭欢欢,李洪生,李俊杰,梁丽梅,李文静,胡书奎. 近废弃油藏延长生命周期开发调整技术 [J]. 油气藏评价与开发, 2024, 14(1): 124-132. |
[2] | 崔玉东, 陆程, 关子越, 罗万静, 滕柏路, 孟凡璞, 彭越. 南海海域天然气水合物降压开采储层蠕变对气井产能影响 [J]. 油气藏评价与开发, 2023, 13(6): 809-818. |
[3] | 何海燕, 刘先山, 耿少阳, 孙军昌, 孙彦春, 贾倩. 基于渗流-温度双场耦合的油藏型储气库数值模拟 [J]. 油气藏评价与开发, 2023, 13(6): 819-826. |
[4] | 梁运培, 张怀军, 王礼春, 秦朝中, 田键, 陈强, 史博文. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究 [J]. 油气藏评价与开发, 2023, 13(6): 834-843. |
[5] | 张家伟, 刘向君, 熊健, 梁利喜, 任建飞, 刘佰衢. 双井同步压裂裂缝扩展规律离散元模拟 [J]. 油气藏评价与开发, 2023, 13(5): 657-667. |
[6] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[7] | 陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
[8] | 候梦如,梁冰,孙维吉,刘奇,赵航. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究 [J]. 油气藏评价与开发, 2023, 13(1): 100-107. |
[9] | 刘叶轩,刘向君,丁乙,周鑫,梁利喜. 考虑隔层影响的页岩油储层可压性评价方法 [J]. 油气藏评价与开发, 2023, 13(1): 74-82. |
[10] | 何封,冯强,崔宇诗. W页岩气藏气井控压生产制度数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(1): 91-99. |
[11] | 郭鸿,夏岩,陈雷,金光,刘建强. 废弃油气井改造的地热井换热性能影响因素模拟研究 [J]. 油气藏评价与开发, 2022, 12(6): 850-858. |
[12] | 程晓军. 缝洞型油藏注烃气提高采收率参数优化数值模拟研究 [J]. 油气藏评价与开发, 2022, 12(6): 902-909. |
[13] | 周海燕,张运来,梁潇,张吉磊,许亚南,刘继柱. 考虑多因素的多层合采产液量劈分模式研究 [J]. 油气藏评价与开发, 2022, 12(6): 945-950. |
[14] | 崔传智,闫大伟,姚同玉,王建,张传宝,吴忠维. CO2驱前缘运移规律及气窜时机预测方法——以胜利油田G89-1区块为例 [J]. 油气藏评价与开发, 2022, 12(5): 741-747. |
[15] | 廖松林,夏阳,崔轶男,刘方志,曹胜江,汤勇. 超低渗油藏水平井注CO2多周期吞吐原油性质变化规律研究 [J]. 油气藏评价与开发, 2022, 12(5): 784-793. |
|