[1] |
李勇, 胡海涛, 王延斌, 等. 煤层气井低产原因及二次改造技术应用分析[J]. 矿业科学学报, 2022, 7(1): 55 -70.
|
|
LI Yong, HU Haitao, WANG Yanbin, et al. Analysis of low production coalbed methane wells and application of secondary reconstruction technologies[J]. Journal of Mining Science and Technology, 2022, 7(1): 55-70.
|
[2] |
WU Y, LIU J S, ELSWORTH D. Development of anisotropic permeability during coalbed methane production[J]. Journal of Natural Gas Science and Engineering, 2010, 2(4): 197-210.
doi: 10.1016/j.jngse.2010.06.002
|
[3] |
WU Y, LIU J S, ELSWORTH D, et al. Dual poroelastic response of a coal seam to CO2 injection[J]. Greenhouse Gas Control, 2010, 4(4): 668-678.
doi: 10.1016/j.ijggc.2010.02.004
|
[4] |
罗平亚. 关于大幅度提高我国煤层气井单井产量的探讨[J]. 天然气工业, 2013, 33(6): 1-6.
|
|
LUO Pingya. A discussion on how to significantly improve the single well productivity of CBM gas wells in China[J]. Natural Gas Industry, 2013, 33(6): 1-6.
|
[5] |
ROBERTSON E P, CHRISTIANSEN R L. A permeability model for coal and other fractured, sorptive-elastic media[J]. SPE Journal, 2008, 13(3): 314-324.
doi: 10.2118/104380-PA
|
[6] |
GU F G, CHALATURNYK R. Permeability and porosity models considering anisotropy and discontinuity of coalbeds and application in coupled simulation[J]. Petroleum Science and Engineering, 2010, 74(3): 113-131.
|
[7] |
THARAROOP P, KARPYN Z T, ERTEKIN T. Development of a multi-mechanistic, dual-porosity, dual-permeability, numerical flow model for coalbed methane reservoirs[J]. Natural Gas Science and Engineering, 2012, 8: 121-131.
|
[8] |
刘子雄. 基于微地震向量扫描的煤层气井天然裂缝监测[J]. 煤田地质与勘探, 2020, 48(5): 204-210.
|
|
LIU Zixiong. Microseismic vector scanning-based natural fracture monitoring of the coalbed methane wells[J]. Coal Geology & Exploration, 2020, 48(5): 204-210.
|
[9] |
刘世奇, 王鹤, 王冉, 等. 煤层孔隙与裂隙特征研究进展[J]. 沉积学报, 2021, 39(1): 212-230.
|
|
LIU Shiqi, WANG He, WANG Ran, et al. Research progress on pore and fracture characteristics of coal seam[J]. Acta Sedimentologica Sinica, 2021, 39(1): 212-230.
|
[10] |
李祥春, 高佳星, 张爽, 等. 基于扫描电镜、孔隙-裂隙分析系统和气体吸附的煤孔隙结构联合表征[J]. 地球科学, 2022, 47(5): 1876-1889.
|
|
LI Xiangchun, GAO Jiaxing, ZHANG Shuang, et al. Combined characterization of scanning electron microscopy, pore and crack analysis system, and gas adsorption on pore structure of coal with different volatilization[J]. Earth Science, 2022, 47(5): 1876-1889.
|
[11] |
PAN Z J, CONNELL L D. Modelling permeability for coal reservoirs: A review of analytical models and testing data[J]. Coal Geology, 2012, 92(1): 1-44.
doi: 10.1016/j.coal.2011.12.009
|
[12] |
XUE J H, LI Y H, LI H B, et al. Experimental study on change mechanism of coal and rock permeability under total stress and strain condition[J]. Safety in Coal Mines, 2021, 52(2): 33-37.
|
[13] |
张雷, 郝帅, 张伟, 等. 中低煤阶煤层气储量复算及认识——以鄂尔多斯盆地东缘保德煤层气田为例[J]. 石油实验地质, 2020, 42(1): 147-155.
|
|
ZHANG Lei, HAO Shuai, ZHANG Wei, et al. Recalculation and understanding of middle and low rank coalbed methane reserves: A case study of Baode Coalbed Methane Field on the eastern edge of Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(1): 147-155.
|
[14] |
MENG Z P, ZHANG J C, WANG R. In-situ stress, pore pressure and stress-dependent permeability in the Southern Qinshui Basin[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(1): 122-131.
|
[15] |
WARREN J E, ROOT P J. The behavior of naturally fractured reservoirs[J]. SPE Journal, 1963, 3(3): 245-255.
|
[16] |
ELSWORTH D, MAO B. Flow-deformation response of dual-porosity media[J]. Journal of Geotechnical Engineering, 1992, 118(1): 107.
doi: 10.1061/(ASCE)0733-9410(1992)118:1(107)
|
[17] |
姚海鹏, 于东方, 李玲, 等. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2): 1-8.
|
|
YAO Haipeng, YU Dongfang, LI Ling, et al. Adsorption characteristics of typical coal reservoirs in Inner Mongolia[J]. Lithologic Reservoirs, 2021, 33(2): 1-8.
|
[18] |
石军太, 李相方, 徐兵祥, 等. 煤层气解吸扩散渗流模型研究进展[J]. 中国科学: 物理学力学天文学, 2013, 43(12): 1548-1557.
|
|
SHI Juntai, LI Xiangfang, XU Bingxiang, et al. Review on desorption-diffusion-flow model of coal-bed methane[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(12): 1548-1557.
|
[19] |
李前贵, 康毅力, 罗平亚. 煤层甲烷解吸—扩散—渗流过程的影响因素分析[J]. 煤田地质与勘探, 2003, 31(4): 26-29.
|
|
LI Qiangui, KANG Yili, LUO Pingya. Analysis of the factors affecting processes of CBM desorption,diffusion and percolation[J]. Coal Geology & Exploration, 2003, 31(4): 26-29.
|
[20] |
朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1): 86-94.
|
|
ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coalfield[J]. Lithologic Reservoirs, 2022, 34(1): 86-94.
|
[21] |
刘继滨, 寇双燕, 刘继芹. 煤层气-水两相三孔介质渗流规律研究[J]. 石油化工应用, 2017, 36(10):14-19.
|
|
LIU Gibin, KOU Shuangyan, LIU Jiqin. Study on coalbed methane-water two-phase seepage law in triple porosity medium[J]. Petrochemical Industry Application 2017, 36(10): 14-19.
|
[22] |
张玉柱. 基于裂隙网络图像的煤层气流动特性研究[J]. 煤矿安全, 2021, 52(9): 172-177.
|
|
ZHANG Yuzhu. Study on coalbed methane flow characteristics based on fracture network image[J]. Safety in Coal Mines, 2021, 52(9): 172-177.
|
[23] |
XIA B W, LIU S W, OU C N, et al. Experimental study on mechanical properties of sandstone with single fracture under fully-mechanized top-coal caving mining stress path[J]. Coal Science and Technology, 2022, 50(2): 95-105.
|