[1] |
何叶, 张涵冰, 郑儒, 等. 基于元素录井的页岩气水平井钻遇小层分析及储层评价参数计算[J]. 天然气工业, 2021, 41(增刊1): 110-117.
|
|
HE Ye, ZHANG Hanbing, ZHENG Ru, et al. Analyzing the sublayers drilled by shale-gas horizontal wells and calculating reservoir evaluation parameters based on element logging[J]. Natural Gas Industry, 2021, 41 (sup.1): 110-117.
|
[2] |
王燕, 雷有为, 付小平, 等. 涪陵区块凉高山组页岩气储层特征及关键参数评价[J]. 复杂油气藏, 2020, 13(4): 23-28.
|
|
WANG Yan, LEI Youwei, FU Xiaoping, et al. Characteristics and key parameter evaluation of shale gas reservoirsin Lianggaoshan Formation in Fuling Block[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 23-28.
|
[3] |
李亚龙, 刘先贵, 胡志明, 等. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
doi: 10.11867/j.issn.1001-8166.2020.037
|
|
LI Yalong, LIU Xiangui, HU Zhiming, et al. Summary of numerical models for predicting productivity of shale gas horizontal wells[J]. Advances in Earth Science, 2020, 35(4): 350-362.
doi: 10.11867/j.issn.1001-8166.2020.037
|
[4] |
陈元千, 徐佳倩, 傅礼兵. 预测页岩气井产量和可采储量泛指数递减模型的建立及应用[J]. 油气地质与采收率, 2021, 28(1): 132-136.
|
|
CHEN Yuanqian, XU Jiaqian, FU Libing. Establishment and application of pan exponential decline model for forecasting production rate and recoverable reserves of shale gas wells[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 132-136.
|
[5] |
王清媛, 黄全舟. 浅析机器学习在石油测井领域的研究进展[J]. 清洗世界, 2021, 37(3): 120-122.
|
|
WANG Qingyuan, HUANG Quanzhou. Research progress of machine learning in oil logging[J]. Cleaning world, 2021, 37(3): 120-122.
|
[6] |
闵超, 代博仁, 张馨慧, 等. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 1-15.
doi: 10.11885/j.issn.1674-5086.2020.06.05.03
|
|
MIN Chao, DAI Boren, ZHANG Xinhui, et al. A review of the application progress of machine learning in oil and gas industry[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6): 1-15.
doi: 10.11885/j.issn.1674-5086.2020.06.05.03
|
[7] |
NEGASH Berihun Mamo, YAW Atta Dennis. 基于人工神经网络的注水开发油藏产量预测[J]. 石油勘探与开发, 2020, 47(2): 357-365.
doi: 10.11698/PED.2020.02.14
|
|
NEGASH Berihun Mamo, YAW Atta Dennis. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection[J]. Petroleum Exploration and Development, 2020, 47(2): 357-365.
doi: 10.11698/PED.2020.02.14
|
[8] |
林年添, 张栋, 张凯, 等. 地震油气储层的小样本卷积神经网络学习与预测[J]. 地球物理学报, 2018, 61(10): 4110-4125.
|
|
LIN NianTian, ZHANG Dong, ZHANG Kai, et al. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network[J]. Chinese Journal of Geophysics, 2018, 61(10): 4110-4125.
|
[9] |
ZHANG H Q, YU F S, SUN J C, et al. Deep learning for sea cucumber detection using stochastic gradient descent algorithm[J]. European Journal of Remote Sensing, 2020, 53 (sup.1): 53-62.
|
[10] |
李英, 贺春林. 面向深度神经网络训练的数据差分隐私保护随机梯度下降算法[J]. 计算机应用与软件, 2020, 37(4): 252-259.
|
|
LI Ying, HE Chunlin. Data differential privacy protection stochastic gradient descent algorithm for deep neural network training[J]. Computer Applications and Software, 2020, 37(4): 252-259.
|
[11] |
穆翔宇, 范钰, 李苏吉, 等. 一种基于梯度下降算法的蜕变关系生成方法[J]. 吉林大学学报(理学版), 2020, 58(6): 1429-1435.
|
|
MU Xiangyu, FAN Yu, LI Suji, et al. Method of generating metamorphic relationship based on gradient descent algorithm[J]. Journal of Jilin University (Science Edition), 2020, 58(6): 1429-1435.
|
[12] |
黎静华, 黄乾, 韦善阳, 等. 基于S-BGD和梯度累积策略的改进深度学习方法及其在光伏出力预测中的应用[J]. 电网技术, 2017, 41(10): 3292-3300.
|
|
LI Jinghua, HUANG Qian, WEI Shanyang, et al. Improved deep learning algorithm based on S-BGD and gradient pile strategy and its application in PV power forecasting[J]. Power System Technology, 2017, 41(10): 3292-3300.
|
[13] |
李兴怡, 岳洋. 梯度下降算法研究综述[J]. 软件工程, 2020, 23(2): 1-4.
|
|
LI Xingyi, YUE Yang. Survey of gradient descent algorithm[J]. Software Engineer, 2020, 23(2): 1-4.
|
[14] |
陈泽坤, 程晓荣. 基于梯度下降算法的房价回归分析与预测[J]. 信息技术与信息化, 2020, 5(5): 10-13.
|
|
CHEN Zekun, CHENG Xiaorong. Housing price regression analysis and prediction based on gradient descent algorithm[J]. Information Technology & Informatization, 2020, 5(5): 10-13.
|
[15] |
耿晓燕, 何畅, 万玉金. 基于灰色关联法的页岩气水平井产能评价及预测[J]. 数学的实践与认识, 2020, 50(19): 100-106.
|
|
GENG Xiaoyan, HE Chang, WAN Yujin. Production evaluation and prediction of horizontal shale gas wells based on grey correlation method[J]. Mathematics in Practice and Theory, 2020, 50(19): 100-106.
|
[16] |
郑亚军, 刘宝成, 张旭泽, 等. 数据驱动与地质规律融合的超低渗油藏产能预测方法[J]. 石油地质与工程, 2022, 36(4): 75-81.
|
|
ZHENG Yajun, LIU Baocheng, ZHANG Xuze, et al. Productivity prediction method of ultra-low permeability reservoir based on data-driven and geological law[J]. Petroleum Geology & Engineering, 2022, 36(4): 75-81.
|
[17] |
田媛, 梁永全. 基于小批量梯度下降的布谷鸟搜索算法[J]. 山东科技大学学报(自然科学版), 2020, 39(5): 56-67.
|
|
TIAN Yuan, LIANG Yongquan. Cuckoo search algorithm based on mini-batch gradient descent[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39 (5): 56-67.
|
[18] |
宋杰, 朱勇, 许冰. 批量减数更新方差缩减梯度下降算法BSUG[J]. 计算机工程与应用, 2020, 56(22): 117-123.
doi: 10.3778/j.issn.1002-8331.2003-0261
|
|
SONG Jie, ZHU Yong, XU Bing. Batch subtraction update variance reduction gradient descent algorithm BSUG[J]. Computer Engineering and Applications, 2020, 56(22): 117-123.
doi: 10.3778/j.issn.1002-8331.2003-0261
|
[19] |
李英, 贺春林. 面向深度神经网络训练的数据差分隐私保护随机梯度下降算法[J]. 计算机应用与软件, 2020, 37(4): 252-259.
|
|
LI Ying, HE Chunlin. Data differential privacy protection stochastic gradient descent algorithm for deep neural network training[J]. Computer Applications and Software, 2020, 37(4): 252-259.
|
[20] |
王一鸣, 宋先海, 张学强. 应用人工神经网络算法的地震面波非线性反演[J]. 石油地球物理勘探, 2021, 56(5): 979-991.
|
|
WANG Yiming, SONG Xianhai, ZHANG Xueqiang. Research on nonlinear inversion of seismic surface waves based on artificial neural network algorithm[J]. Oil Geophysical Prospecting, 2021, 56(5): 979-991.
|
[21] |
许泽坤, 陈隽. 非线性结构地震响应的神经网络算法[J]. 工程力学, 2021, 38(9): 133-145.
|
|
XU Zekun, CHEN Jun. Neural network algorithm for nonlinear structural seismic response[J]. Engineering Mechanics, 2021, 38(9): 133-145.
|
[22] |
卫浪, 蒲红宇, 向辉, 等. 基于改进神经网络的丙烷回收流程多目标优化[J]. 石油与天然气化工, 2021, 50(1): 66-71.
|
|
WEI Lang, PU Hongyu, XIANG Hui, et al. Multi-objective optimization of propane recovery process based on improved BP neural network[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 66-71.
|