油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (4): 467-473.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.008
林魂1,2(),孙新毅1(),宋西翔1,蒙春2,熊雯欣1,黄俊和1,刘洪博1,刘成1
收稿日期:
2022-03-30
出版日期:
2023-08-26
发布日期:
2023-09-01
通讯作者:
孙新毅(1996—),男,在读硕士研究生,从事机器学习方面研究。地址:重庆市沙坪坝区大学城东路20号,邮政编码:401331。E-mail:作者简介:
林魂(1988—),男,博士,副教授,从事油气田开发工程方面研究。地址:重庆市沙坪坝区大学城东路20号,邮政编码:401331。E-mail:基金资助:
LIN Hun1,2(),SUN Xinyi1(),SONG Xixiang1,MENG Chun2,XIONG Wenxin1,HUANG Junhe1,LIU Hongbo1,LIU Cheng1
Received:
2022-03-30
Online:
2023-08-26
Published:
2023-09-01
摘要:
传统页岩气井产量预测方法难以对储层参数、压裂参数与产量的关系做出有效分析,而机器学习方法具有解决这一问题的能力。提出了基于物理意义和随机组合的方法构建特征参数,并采用小批量梯度下降法(MBGD)作为训练函数,建立了针对页岩气井产量预测的改进人工神经网络预测模型。然后结合实例,利用改进后的人工神经网络模型对页岩气井产量进行预测,并通过计算均方误差(MSE)和修正决定系数(T)的值对模型的优劣程度和预测精度进行评价。结果表明,建立的改进神经网络模型预测产量结果与实际产量值吻合度较高,且相比传统的BP(误差反向传播算法)神经网络模型,在预测精度和稳定性方面具有明显优势。该模型能为页岩气储层压裂优化设计以及产能评价提供重要支持。
中图分类号:
林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究[J]. 油气藏评价与开发, 2023, 13(4): 467-473.
LIN Hun, SUN Xinyi, SONG Xixiang, MENG Chun, XIONG Wenxin, HUANG Junhe, LIU Hongbo, LIU Cheng. A model for shale gas well production prediction based on improved artificial neural network[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 467-473.
表4
日实际产量与改进的网络模型方法和传统BP方法预测结果对比"
序号 | 实际 日产量/ 103 m3 | 传统BP 方法预测值/ 103 m3 | 相对 误差/ % | 改进的网络模型方法预测值/ 103 m3 | 相对 误差/ % |
---|---|---|---|---|---|
1 | 9.184 | 7.632 | -16.89 | 8.863 | -3.49 |
2 | 2.651 | 3.594 | 35.57 | 2.889 | 8.97 |
3 | 3.706 | 4.356 | 17.53 | 3.836 | 3.51 |
4 | 5.907 | 4.986 | -15.59 | 6.106 | 3.36 |
5 | 5.678 | 6.723 | 18.40 | 5.852 | 3.06 |
6 | 3.188 | 3.976 | 24.72 | 2.901 | -9.00 |
7 | 5.729 | 6.932 | 20.99 | 5.665 | -1.12 |
8 | 9.740 | 8.134 | -16.49 | 9.985 | 2.52 |
9 | 2.403 | 1.688 | -29.75 | 2.565 | 6.74 |
10 | 5.374 | 6.266 | 16.59 | 5.594 | 4.09 |
[1] | 何叶, 张涵冰, 郑儒, 等. 基于元素录井的页岩气水平井钻遇小层分析及储层评价参数计算[J]. 天然气工业, 2021, 41(增刊1): 110-117. |
HE Ye, ZHANG Hanbing, ZHENG Ru, et al. Analyzing the sublayers drilled by shale-gas horizontal wells and calculating reservoir evaluation parameters based on element logging[J]. Natural Gas Industry, 2021, 41 (sup.1): 110-117. | |
[2] | 王燕, 雷有为, 付小平, 等. 涪陵区块凉高山组页岩气储层特征及关键参数评价[J]. 复杂油气藏, 2020, 13(4): 23-28. |
WANG Yan, LEI Youwei, FU Xiaoping, et al. Characteristics and key parameter evaluation of shale gas reservoirsin Lianggaoshan Formation in Fuling Block[J]. Complex Hydrocarbon Reservoirs, 2020, 13(4): 23-28. | |
[3] |
李亚龙, 刘先贵, 胡志明, 等. 页岩气水平井产能预测数值模型综述[J]. 地球科学进展, 2020, 35(4): 350-362.
doi: 10.11867/j.issn.1001-8166.2020.037 |
LI Yalong, LIU Xiangui, HU Zhiming, et al. Summary of numerical models for predicting productivity of shale gas horizontal wells[J]. Advances in Earth Science, 2020, 35(4): 350-362.
doi: 10.11867/j.issn.1001-8166.2020.037 |
|
[4] | 陈元千, 徐佳倩, 傅礼兵. 预测页岩气井产量和可采储量泛指数递减模型的建立及应用[J]. 油气地质与采收率, 2021, 28(1): 132-136. |
CHEN Yuanqian, XU Jiaqian, FU Libing. Establishment and application of pan exponential decline model for forecasting production rate and recoverable reserves of shale gas wells[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(1): 132-136. | |
[5] | 王清媛, 黄全舟. 浅析机器学习在石油测井领域的研究进展[J]. 清洗世界, 2021, 37(3): 120-122. |
WANG Qingyuan, HUANG Quanzhou. Research progress of machine learning in oil logging[J]. Cleaning world, 2021, 37(3): 120-122. | |
[6] |
闵超, 代博仁, 张馨慧, 等. 机器学习在油气行业中的应用进展综述[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 1-15.
doi: 10.11885/j.issn.1674-5086.2020.06.05.03 |
MIN Chao, DAI Boren, ZHANG Xinhui, et al. A review of the application progress of machine learning in oil and gas industry[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6): 1-15.
doi: 10.11885/j.issn.1674-5086.2020.06.05.03 |
|
[7] |
NEGASH Berihun Mamo, YAW Atta Dennis. 基于人工神经网络的注水开发油藏产量预测[J]. 石油勘探与开发, 2020, 47(2): 357-365.
doi: 10.11698/PED.2020.02.14 |
NEGASH Berihun Mamo, YAW Atta Dennis. Artificial neural network based production forecasting for a hydrocarbon reservoir under water injection[J]. Petroleum Exploration and Development, 2020, 47(2): 357-365.
doi: 10.11698/PED.2020.02.14 |
|
[8] | 林年添, 张栋, 张凯, 等. 地震油气储层的小样本卷积神经网络学习与预测[J]. 地球物理学报, 2018, 61(10): 4110-4125. |
LIN NianTian, ZHANG Dong, ZHANG Kai, et al. Predicting distribution of hydrocarbon reservoirs with seismic data based on learning of the small-sample convolution neural network[J]. Chinese Journal of Geophysics, 2018, 61(10): 4110-4125. | |
[9] | ZHANG H Q, YU F S, SUN J C, et al. Deep learning for sea cucumber detection using stochastic gradient descent algorithm[J]. European Journal of Remote Sensing, 2020, 53 (sup.1): 53-62. |
[10] | 李英, 贺春林. 面向深度神经网络训练的数据差分隐私保护随机梯度下降算法[J]. 计算机应用与软件, 2020, 37(4): 252-259. |
LI Ying, HE Chunlin. Data differential privacy protection stochastic gradient descent algorithm for deep neural network training[J]. Computer Applications and Software, 2020, 37(4): 252-259. | |
[11] | 穆翔宇, 范钰, 李苏吉, 等. 一种基于梯度下降算法的蜕变关系生成方法[J]. 吉林大学学报(理学版), 2020, 58(6): 1429-1435. |
MU Xiangyu, FAN Yu, LI Suji, et al. Method of generating metamorphic relationship based on gradient descent algorithm[J]. Journal of Jilin University (Science Edition), 2020, 58(6): 1429-1435. | |
[12] | 黎静华, 黄乾, 韦善阳, 等. 基于S-BGD和梯度累积策略的改进深度学习方法及其在光伏出力预测中的应用[J]. 电网技术, 2017, 41(10): 3292-3300. |
LI Jinghua, HUANG Qian, WEI Shanyang, et al. Improved deep learning algorithm based on S-BGD and gradient pile strategy and its application in PV power forecasting[J]. Power System Technology, 2017, 41(10): 3292-3300. | |
[13] | 李兴怡, 岳洋. 梯度下降算法研究综述[J]. 软件工程, 2020, 23(2): 1-4. |
LI Xingyi, YUE Yang. Survey of gradient descent algorithm[J]. Software Engineer, 2020, 23(2): 1-4. | |
[14] | 陈泽坤, 程晓荣. 基于梯度下降算法的房价回归分析与预测[J]. 信息技术与信息化, 2020, 5(5): 10-13. |
CHEN Zekun, CHENG Xiaorong. Housing price regression analysis and prediction based on gradient descent algorithm[J]. Information Technology & Informatization, 2020, 5(5): 10-13. | |
[15] | 耿晓燕, 何畅, 万玉金. 基于灰色关联法的页岩气水平井产能评价及预测[J]. 数学的实践与认识, 2020, 50(19): 100-106. |
GENG Xiaoyan, HE Chang, WAN Yujin. Production evaluation and prediction of horizontal shale gas wells based on grey correlation method[J]. Mathematics in Practice and Theory, 2020, 50(19): 100-106. | |
[16] | 郑亚军, 刘宝成, 张旭泽, 等. 数据驱动与地质规律融合的超低渗油藏产能预测方法[J]. 石油地质与工程, 2022, 36(4): 75-81. |
ZHENG Yajun, LIU Baocheng, ZHANG Xuze, et al. Productivity prediction method of ultra-low permeability reservoir based on data-driven and geological law[J]. Petroleum Geology & Engineering, 2022, 36(4): 75-81. | |
[17] | 田媛, 梁永全. 基于小批量梯度下降的布谷鸟搜索算法[J]. 山东科技大学学报(自然科学版), 2020, 39(5): 56-67. |
TIAN Yuan, LIANG Yongquan. Cuckoo search algorithm based on mini-batch gradient descent[J]. Journal of Shandong University of Science and Technology(Natural Science), 2020, 39 (5): 56-67. | |
[18] |
宋杰, 朱勇, 许冰. 批量减数更新方差缩减梯度下降算法BSUG[J]. 计算机工程与应用, 2020, 56(22): 117-123.
doi: 10.3778/j.issn.1002-8331.2003-0261 |
SONG Jie, ZHU Yong, XU Bing. Batch subtraction update variance reduction gradient descent algorithm BSUG[J]. Computer Engineering and Applications, 2020, 56(22): 117-123.
doi: 10.3778/j.issn.1002-8331.2003-0261 |
|
[19] | 李英, 贺春林. 面向深度神经网络训练的数据差分隐私保护随机梯度下降算法[J]. 计算机应用与软件, 2020, 37(4): 252-259. |
LI Ying, HE Chunlin. Data differential privacy protection stochastic gradient descent algorithm for deep neural network training[J]. Computer Applications and Software, 2020, 37(4): 252-259. | |
[20] | 王一鸣, 宋先海, 张学强. 应用人工神经网络算法的地震面波非线性反演[J]. 石油地球物理勘探, 2021, 56(5): 979-991. |
WANG Yiming, SONG Xianhai, ZHANG Xueqiang. Research on nonlinear inversion of seismic surface waves based on artificial neural network algorithm[J]. Oil Geophysical Prospecting, 2021, 56(5): 979-991. | |
[21] | 许泽坤, 陈隽. 非线性结构地震响应的神经网络算法[J]. 工程力学, 2021, 38(9): 133-145. |
XU Zekun, CHEN Jun. Neural network algorithm for nonlinear structural seismic response[J]. Engineering Mechanics, 2021, 38(9): 133-145. | |
[22] | 卫浪, 蒲红宇, 向辉, 等. 基于改进神经网络的丙烷回收流程多目标优化[J]. 石油与天然气化工, 2021, 50(1): 66-71. |
WEI Lang, PU Hongyu, XIANG Hui, et al. Multi-objective optimization of propane recovery process based on improved BP neural network[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 66-71. |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[3] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[4] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[5] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[6] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[7] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[8] | 刘洪林,周尚文,李晓波. PCA-OPLS联合法快速评价页岩气井储量动用程度 [J]. 油气藏评价与开发, 2023, 13(4): 474-483. |
[9] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[10] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[11] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[12] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
[13] | 赵仁文,肖佃师,卢双舫,周能武. 高—过成熟陆相断陷盆地页岩与海相页岩储层特征对比——以徐家围子断陷沙河子组和四川盆地龙马溪组为例 [J]. 油气藏评价与开发, 2023, 13(1): 52-63. |
[14] | 李颖,李茂茂,李海涛,于皓,张启辉,罗红文. 水相渗吸对页岩储层的物化作用机理研究 [J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
[15] | 何封,冯强,崔宇诗. W页岩气藏气井控压生产制度数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(1): 91-99. |
|