油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (4): 474-483.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.009
收稿日期:
2022-04-08
发布日期:
2023-09-01
出版日期:
2023-08-26
作者简介:
刘洪林(1973—),男,硕士,高级工程师,主要从事非常规油气勘探开发工作。地址:北京市海淀区学院路20号中国石油勘探开发研究院, 邮政编码:100083。E-mail:基金资助:
LIU Honglin1,2,3(),ZHOU Shangwen1,2,3,LI Xiaobo1,2,3
Received:
2022-04-08
Online:
2023-09-01
Published:
2023-08-26
摘要:
川南地区已经钻探完成了上千口页岩气井,地质评价、钻探和生产过程中产生了大量高维度的数据,利用生产获得的各种数据预测页岩气储量动用程度,是指导页岩气勘探开发的一项重要工作。耦合主成分分析法(PCA)与正交偏最小二乘法(OPLS)分析方法是形成一种快速、准确的储量动用程度预测新方法。通过结合主成分分析和正交偏最小二乘法,建立了PCA-OPLS联合法,借助昭通页岩气井样本,检验了新方法在储量动用程度评价中的应用效果。实例应用表明,页岩气井储量动用预测准确率满足要求,可以用于预测新钻井的储量动用程度,从而证明PCA-OPLS联合法能达到快速、准确预测储量动用程度的目的。该方法操作简单,准确率高,在页岩气储量动用评价中具有较好的应用前景。
中图分类号:
Honglin LIU,Shangwen ZHOU,Xiaobo LI. Application of PCA plus OPLS method in rapid reserve production rate prediction of shale gas wells[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 474-483.
表1
页岩气井实验样本的主要参数"
井号 | 自变量X | 因变量Y | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
脆性 矿物/ % | 储层 厚度/ m | 总有机碳/ % | 孔隙度/ % | 总含 气量/ (m3·t-1) | 含气饱和度/ % | 吸附 含气量/ (m3·t-1) | 资源丰度/ (108 m3·km-2) | 单井 储量/ 108 m3 | 水平 段长/ m | 压裂 液量/ m3 | 加砂量/ t | 最小 施工排量/ (m3·min-1) | 最大 施工排量/ (m3·min-1) | 井口 压力/MPa | IP30/ 104 m3 | 单井 可采储量/ 108 m3 | 测试 日产量/ 104 m3 | 生产 天数/ d | 储量 动用程度/ % | ||
YS108H1-2 | 62 | 72 | 2.3 | 6.3 | 5.5 | 54.3 | 3.1 | 9.0 | 4.5 | 1 408 | 34 569 | 1 381 | 3.5 | 10.7 | 31.7 | 13.31 | 0.67 | 18.60 | 1 976 | 14.9 | |
YS108H1-4 | 63 | 71 | 2.2 | 5.9 | 5.3 | 52.1 | 2.5 | 9.2 | 4.5 | 1 404 | 36 982 | 1 315 | 8.0 | 11.3 | 29.7 | 10.99 | 1.54 | 24.23 | 2 147 | 34.2 | |
YS108H1-8 | 58 | 70 | 2.5 | 6.1 | 5.6 | 51.4 | 3.1 | 8.8 | 4.6 | 1 478 | 36 563 | 1 288 | 9.3 | 10.8 | 15.8 | 8.92 | 1.08 | 26.08 | 2 147 | 23.5 | |
YS108H2-2 | 58 | 69 | 2.4 | 6.3 | 5.6 | 56.0 | 2.5 | 8.9 | 4.5 | 1 433 | 38 322 | 2 096 | 12.2 | 14.2 | 23.6 | 9.09 | 0.81 | 14.89 | 1 695 | 18.0 | |
YS108H2-3 | 58 | 70 | 2.7 | 6.0 | 5.5 | 52.5 | 3.5 | 8.8 | 6.0 | 1 900 | 18 759 | 1 055 | 12.8 | 13.5 | 27.3 | 8.12 | 0.55 | 35.14 | 1 290 | 9.2 | |
YS108H2-4 | 56 | 70 | 2.4 | 5.9 | 5.8 | 53.4 | 2.9 | 8.8 | 5.1 | 1 630 | 41 819 | 2 306 | 13.3 | 14.0 | 16.5 | 15.61 | 1.26 | 29.03 | 1 693 | 24.7 | |
YS108H2-5 | 55 | 70 | 2.8 | 5.9 | 5.5 | 52.0 | 3.4 | 8.9 | 3.6 | 1 154 | 29 240 | 1 443 | 9.8 | 14.2 | 21.6 | 8.04 | 0.89 | 24.75 | 1 701 | 24.7 | |
YS108H3-2 | 56 | 72 | 2.6 | 5.9 | 5.5 | 50.5 | 3.3 | 9.0 | 4.8 | 1 491 | 37 770 | 1 576 | 10.2 | 12.7 | 20.9 | 15.85 | 1.10 | 17.50 | 2 280 | 22.9 | |
YS108H6-5 | 58 | 62 | 2.8 | 5.2 | 4.5 | 48.5 | 3.2 | 6.7 | 3.7 | 1 515 | 34 376 | 987 | 6.0 | 11.0 | 15.7 | 8.28 | 0.87 | 15.79 | 2 257 | 23.5 | |
YS108H8-5 | 54 | 62 | 2.7 | 4.6 | 5.0 | 46.0 | 3.2 | 6.8 | 4.0 | 1 665 | 32 217 | 1 893 | 10.0 | 13.2 | 11.6 | 2.12 | 0.51 | 10.87 | 1 871 | 12.8 | |
YS108H9-2 | 56 | 60 | 2.6 | 4.6 | 4.7 | 44.3 | 3.0 | 6.8 | 3.8 | 1 570 | 36 756 | 1 630 | 10.3 | 12.1 | 11.1 | 4.13 | 0.47 | 12.23 | 1 533 | 12.4 | |
YS108H9-3 | 56 | 61 | 2.7 | 4.5 | 4.9 | 45.5 | 2.6 | 6.7 | 4.0 | 1 650 | 44 452 | 2 113 | 10.0 | 12.3 | 12.9 | 4.08 | 0.83 | 11.25 | 1 540 | 20.8 | |
YS108H9-5 | 56 | 61 | 2.7 | 4.7 | 4.9 | 44.7 | 3.1 | 6.7 | 3.3 | 1 350 | 31 031 | 1 442 | 10.2 | 12.1 | 13.7 | 3.72 | 0.33 | 13.19 | 1 543 | 10.0 | |
YS108H11-1 | 49 | 69 | 2.3 | 4.9 | 4.9 | 52.0 | 3.2 | 8.0 | 3.9 | 1 383 | 26 093 | 1 209 | 9.3 | 11.4 | 13.0 | 9.16 | 1.09 | 14.00 | 2 183 | 27.9 | |
YS108H13-2 | 54 | 71 | 2.6 | 5.7 | 4.9 | 53.8 | 2.8 | 8.4 | 3.3 | 1 100 | 37 900 | 2 250 | 11.4 | 13.0 | 21.0 | 9.74 | 0.82 | 17.70 | 1 065 | 24.8 | |
YS108H13-3 | 54 | 71 | 2.7 | 5.7 | 5.2 | 53.8 | 2.5 | 8.3 | 3.4 | 1 140 | 40 497 | 2 387 | 11.1 | 12.7 | 22.0 | 11.68 | 1.00 | 16.64 | 1 035 | 29.4 | |
YS108H13-4 | 55 | 53 | 2.5 | 5.1 | 4.2 | 54.4 | 2.8 | 5.4 | 2.5 | 1 330 | 46 500 | 2 750 | 11.3 | 12.2 | 19.1 | 8.02 | 0.99 | 32.50 | 1 035 | 39.6 | |
YS108H19-2 | 55 | 54 | 3.0 | 5.3 | 4.6 | 55.3 | 2.5 | 5.4 | 3.0 | 1 560 | 42 618 | 1 879 | 11.2 | 13.3 | 29.2 | 6.27 | 0.36 | 22.90 | 1 432 | 12.0 | |
YS108H19-4 | 68 | 53 | 2.7 | 5.4 | 4.2 | 54.5 | 3.3 | 5.4 | 2.5 | 1 340 | 37 693 | 1 725 | 12.1 | 14.1 | 29.5 | 5.97 | 0.38 | 27.40 | 1 426 | 15.2 | |
YS108H19-6 | 67 | 53 | 2.8 | 5.1 | 4.4 | 56.4 | 2.2 | 5.4 | 1.8 | 970 | 25 031 | 1 079 | 11.8 | 13.1 | 14.4 | 6.95 | 0.31 | 37.30 | 1 426 | 17.2 |
表3
页岩气井实验样本的成分矩阵"
标准化的X变量 | 主成分 | ||||
---|---|---|---|---|---|
PCA1 | PCA 2 | PCA 3 | PCA 4 | PCA 5 | |
Z-score(优质储层厚度) | 0.837 | 0.080 | -0.101 | 0.308 | -0.220 |
Z-score(资源丰度) | 0.795 | 0.382 | 0.019 | 0.370 | -0.108 |
Z-score(井口压力) | 0.738 | 0.075 | -0.155 | -0.108 | 0.049 |
Z-score(总有机碳) | -0.663 | -0.234 | -0.039 | -0.144 | 0.242 |
Z-score(累计产气) | 0.149 | 0.902 | -0.016 | -0.119 | -0.018 |
Z-score(IP30) | 0.141 | 0.901 | -0.012 | -0.111 | -0.012 |
Z-score(孔隙度) | 0.463 | 0.752 | 0.152 | -0.009 | 0.133 |
Z-score(含气量) | 0.459 | 0.636 | 0.188 | 0.400 | 0.103 |
Z-score(主压裂用液量) | -0.012 | 0.022 | 0.966 | 0.074 | -0.008 |
Z-score(改造段数) | -0.026 | 0.000 | 0.962 | 0.131 | -0.057 |
Z-score(加砂量) | -0.107 | 0.126 | 0.916 | 0.012 | 0.257 |
Z-score(吸附气含量) | -0.097 | 0.460 | -0.134 | 0.722 | -0.062 |
Z-score(含气饱和度) | -0.168 | 0.291 | 0.117 | -0.686 | 0.311 |
Z-score(水平段长) | 0.141 | -0.206 | 0.245 | 0.680 | 0.150 |
Z-score(单井储量) | 0.637 | 0.134 | 0.121 | 0.670 | 0.016 |
Z-score(脆性矿物含量) | -0.320 | 0.025 | -0.321 | -0.566 | -0.062 |
Z-score(最大排量) | -0.156 | 0.145 | 0.030 | 0.020 | 0.889 |
Z-score(最小排量) | 0.042 | -0.184 | -0.015 | -0.024 | 0.841 |
Z-score(井深) | -0.133 | 0.514 | 0.128 | 0.124 | 0.577 |
表4
页岩气井实验样本的主成分得分系数矩阵"
标准化的X变量 | 成分得分系数 | ||||
---|---|---|---|---|---|
资源品质指标 | 产量指标 | 改造程度指标 | 储层质量指标 | 压裂施工指标 | |
Z-score(优质储层厚度) | 0.837 | 0.080 | -0.101 | 0.308 | -0.220 |
Z-score(资源丰度) | 0.795 | 0.382 | 0.019 | 0.370 | -0.108 |
Z-score(井口压力) | 0.738 | 0.075 | -0.155 | -0.108 | 0.049 |
Z-score(总有机碳) | -0.663 | -0.234 | -0.039 | -0.144 | 0.242 |
Z-score(累计产气) | 0.149 | 0.902 | -0.016 | -0.119 | -0.018 |
Z-score(IP30) | 0.149 | 0.902 | -0.016 | -0.119 | -0.018 |
Z-score(孔隙度) | 0.463 | 0.752 | 0.152 | -0.009 | 0.133 |
Z-score(含气量) | 0.459 | 0.636 | 0.188 | 0.400 | 0.103 |
Z-score(主压裂用液量) | -0.012 | 0.022 | 0.966 | 0.074 | -0.008 |
Z-score(改造段数) | -0.026 | 0.000 | 0.962 | 0.131 | -0.057 |
Z-score(加砂量) | -0.107 | 0.126 | 0.916 | 0.012 | 0.257 |
Z-score(吸附气含量) | -0.097 | 0.460 | -0.134 | 0.722 | -0.062 |
Z-score(含气饱和度) | -0.168 | 0.291 | 0.117 | -0.686 | 0.311 |
Z-score(水平段长) | 0.141 | -0.206 | 0.245 | 0.680 | 0.150 |
Z-score(单井储量) | 0.637 | 0.134 | 0.121 | 0.670 | 0.016 |
Z-score(脆性矿物含量) | -0.320 | 0.025 | -0.321 | -0.566 | -0.062 |
Z-score(最大排量) | -0.156 | 0.145 | 0.030 | 0.020 | 0.889 |
Z-score(最小排量) | 0.042 | -0.184 | -0.015 | -0.024 | 0.841 |
Z-score(井深) | -0.133 | 0.514 | 0.128 | 0.124 | 0.577 |
表5
页岩气井实验样本的PCA处理后的矩阵"
井号 | 自变量X' | 因变量Y | |||||
---|---|---|---|---|---|---|---|
资源品质指标 | 产量指标 | 改造程度指标 | 储层质量指标 | 压裂施工指标 | 储量动用程度/% | ||
YS108H1-2 | 38 745.19 | 242 578.90 | 29 169.37 | -26 625.29 | 38 684.12 | 14.9 | |
YS108H1-4 | 31 815.66 | 200 651.80 | 32 300.94 | -21 119.02 | 31 753.22 | 34.2 | |
YS108H1-8 | 25 669.95 | 163 450.99 | 32 491.84 | -16 325.98 | 25 599.78 | 23.5 | |
YS108H2-2 | 25 977.16 | 166 748.52 | 33 369.81 | -16 560.60 | 25 913.70 | 18.0 | |
YS108H2-3 | 23 559.73 | 148 623.42 | 15 293.25 | -15 499.28 | 23 498.18 | 9.2 | |
YS108H2-4 | 45 494.63 | 283 912.81 | 34 990.12 | -31 269.70 | 45 425.26 | 24.7 | |
YS108H2-5 | 23 072.32 | 147 564.03 | 25 219.65 | -15 067.94 | 23 006.75 | 24.7 | |
YS108H3-2 | 46 243.02 | 288 485.75 | 31 464.01 | -32 137.25 | 46 174.13 | 22.9 | |
YS108H6-5 | 23 799.00 | 151 848.49 | 30 773.49 | -14 974.36 | 23 739.38 | 23.5 | |
YS108H8-5 | 5 442.66 | 40 631.93 | 29 577.75 | -909.97 | 5 380.57 | 12.8 | |
YS108H9-2 | 11 374.61 | 76 894.37 | 33 755.54 | -5 246.87 | 11 313.41 | 12.4 | |
YS108H9-3 | 11 123.02 | 76 088.64 | 41 027.27 | -4 541.59 | 11 062.52 | 20.8 | |
YS108H9-5 | 10 214.87 | 69 443.30 | 28 294.55 | -4 880.08 | 10 155.26 | 10.0 | |
YS108H11-1 | 26 495.12 | 167 691.19 | 22 035.12 | -17 699.01 | 26 425.29 | 27.9 | |
YS108H13-2 | 27 887.31 | 178 252.07 | 32 591.70 | -18 339.07 | 27 820.61 | 24.8 | |
YS108H13-3 | 33 636.45 | 213 393.80 | 34 506.93 | -22 589.42 | 33 570.31 | 29.4 | |
YS108H13-4 | 22 637.13 | 147 494.82 | 41 224.96 | -13 616.19 | 22 590.07 | 39.6 | |
YS108H19-2 | 17 589.50 | 115 829.81 | 38 711.51 | -9 716.63 | 17 549.24 | 12.0 | |
YS108H19-4 | 16 724.85 | 110 252.57 | 33 984.25 | -9 539.17 | 16 685.64 | 15.2 | |
YS108H19-6 | 19 808.92 | 127936.21 | 21 583.31 | -12 956.80 | 19 758.71 | 17.2 |
表6
不同方法预测结果与计算结果比较"
井号 | 实际储量 动用程度/% | 预测值/% | 预测误差/% | |||||
---|---|---|---|---|---|---|---|---|
PCA-PLS联合法 | 神经网络法 | 多元线性回归法 | PCA-PLS法 | 神经网络法 | 多元线性回归法 | |||
YS108H1-2 | 14.9 | 14.0 | 24.0 | 18.7 | 0.9 | 9.1 | 3.8 | |
YS108H1-4 | 34.2 | 33.0 | 25.0 | 19.2 | 1.2 | 9.2 | 15.0 | |
YS108H1-8 | 23.5 | 22.8 | 21.9 | 19.0 | 0.7 | 1.6 | 4.5 | |
YS108H2-2 | 18.0 | 20.0 | 26.4 | 21.3 | 2.0 | 8.4 | 3.3 | |
YS108H2-3 | 9.2 | 11.0 | 4.7 | 18.7 | 1.8 | 4.5 | 9.5 | |
YS108H2-4 | 24.7 | 26.0 | 26.2 | 23.3 | 1.3 | 1.5 | 1.4 | |
YS108H2-5 | 24.7 | 24.1 | 23.8 | 17.9 | 0.6 | 0.9 | 6.8 | |
YS108H3-2 | 22.9 | 24.0 | 26.6 | 19.4 | 1.1 | 3.7 | 3.5 | |
YS108H6-5 | 23.5 | 22.1 | 17.3 | 18.2 | 1.4 | 6.2 | 5.3 | |
YS108H8-5 | 12.8 | 10.8 | 17.8 | 18.3 | 2.0 | 5.0 | 5.5 | |
YS108H9-2 | 12.4 | 11.0 | 14.0 | 20.4 | 1.4 | 1.6 | 8.0 | |
YS108H9-3 | 20.8 | 20.0 | 18.2 | 25.7 | 0.8 | 2.6 | 4.9 | |
YS108H9-5 | 10.0 | 12.0 | 15.6 | 18.4 | 2.0 | 5.6 | 8.4 | |
YS108H11-1 | 27.9 | 27.0 | 20.8 | 17.7 | 0.9 | 7.1 | 10.2 | |
YS108H13-2 | 24.8 | 21.8 | 26.6 | 23.4 | 3.0 | 1.8 | 1.4 | |
YS108H13-3 | 29.4 | 28.0 | 27.4 | 25.5 | 1.4 | 2.0 | 3.9 | |
YS108H13-4 | 39.6 | 41.2 | 26.3 | 31.4 | 1.6 | 13.3 | 8.2 | |
YS108H19-2 | 12.0 | 13.5 | 18.5 | 24.5 | 1.5 | 6.5 | 12.5 | |
YS108H19-4 | 15.2 | 12.8 | 20.4 | 21.5 | 2.4 | 5.2 | 6.3 | |
YS108H19-6 | 17.2 | 18.0 | 18.6 | 17.6 | 0.8 | 1.4 | 0.4 | |
平均值 | 1.44 | 4.86 | 6.13 |
[1] |
马新华, 李熙喆, 梁峰, 等. 威远页岩气田单井产能主控因素与开发优化技术对策[J]. 石油勘探与开发, 2020, 47(3): 555-563.
doi: 10.11698/PED.2020.03.11 |
MA Xinhua, LI Xizhe, LIANG Feng, et al. Dominating factors on well productivity and development strategies optimization in Weiyuan shale gas play, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2020, 47(3): 555-563.
doi: 10.11698/PED.2020.03.11 |
|
[2] | 车世琦. 涪陵气田平桥区块页岩气选区评价[J]. 石油地质与工程, 2022, 36(4): 48-54. |
CHE Shiqi. Selection evaluation of shale gas in Pingqiao block of Fuling gas field[J]. Petroleum Geology & Engineering, 2022, 36(4): 48-54. | |
[3] | 张雪峰, 徐最, 康弘男, 等. 达坂城次凹二叠系页岩气地质特征与勘探潜力[J]. 石油地质与工程, 2022, 36(5): 46-51. |
ZHANG Xuefeng, XU Zui, KANG Hongnan, et al. Geological characteristics and exploration potential of Permian shale gas in Dabancheng sub-sag[J]. Petroleum Geology & Engineering, 2022, 36(5): 46-51. | |
[4] | 王沛, 欧阳传湘, 陈宏生, 等. 应用PCA和多元非线性回归快速预测储层敏感性[J]. 断块油气田, 2018, 25(2): 232-235. |
WANG Pei, OUYANG Chuanxiang, CHEN Hongsheng, et al. Application of PCA and multiple nonlinear regression to rapid prediction of reservoir sensitivity[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 232-235. | |
[5] | 祁鹏. 基于偏最小二乘的高炉铁水硅含量预测研究[D]. 包头: 内蒙古科技大学, 2010. |
QI Peng. Partial least squares prediction of silicon content in blast furnace[D]. Baotou: Inner Mongolia University of Science & Technology, 2010. | |
[6] | 吕娜. 雪衣藻响应和适应环境胁迫分子调节的多组学研究[D]. 广州: 华南理工大学, 2014. |
LYU Na. Molecular regulation of snow alga Chlamydomonas nivalis in response to stress conditions using multi-omics study[D]. Guangzhou: South China University of Technology, 2014. | |
[7] | 卢丽, 丁博, 刘青, 等. 多元素含量结合化学计量学技术在鳕鱼物种鉴别和产地溯源中的应用[J]. 食品安全质量检测学报, 2021, 12(24): 9436-9444. |
LU Li, DING Bo, LIU Qing, et al. Application of multi-elements content analysis combined with chemometrics in species identification and origin tracing of cods[J]. Journal of Food Safety and Quality, 2021, 12(24): 9436-9444. | |
[8] | 李霜. 基于代谢组学的数据标准化方法的综合评价[D]. 重庆: 重庆大学, 2018. |
LI Shuang. The comprehensive assessment of normalization methods in MS-based metalomics data[D]. Chongqing: Chongqing University, 2018. | |
[9] | 李君岩. 偏最小二乘回归在油田固井质量预测中的应用研究[D]. 大庆: 东北石油大学, 2014. |
LI Jungang. Application of partial least squares regression in oilfield cementing quality prediction[D]. Daqing: Northeast Petroleum University, 2014. | |
[10] | 柯朝甫, 张涛, 武晓岩, 等. 代谢组学数据分析的统计学方法[J]. 中国卫生统计, 2014, 31(2): 357-359. |
KE Chaopu, ZHANG Tao, WU Xiaoyan, et al. Statistical methods for Metabolomics data analysis[J]. Chinese Journal of Health Statistics, 2014, 31(2): 357-359. | |
[11] |
郝天轩, 柳猛. 基于多元非线性回归理论的煤层瓦斯含量预测[J]. 煤炭技术, 2014, 33(9): 1-3.
doi: 10.1016/0257-8972(87)90172-1 |
HAO Tianxuan, LIU Meng. Prediction of coal seam gas content based on multivariate nonlinear regression[J]. Coal Technology, 2014, 33(9): 1-3.
doi: 10.1016/0257-8972(87)90172-1 |
|
[12] | 王昕旭. 偏最小二乘回归在孔隙度预测中的应用[J]. 地球物理学进展, 2015, 30(6): 2807-2813. |
WANG Xinxu. Partial least-squares regression for the application in porosity prediction[J]. Progress in Geophysics. 2015, 30(6): 2807-2813. | |
[13] |
冯明刚, 严伟, 朱林奇, 等. 基于Boosting-PLS回归的页岩总含气量预测方法[J]. 煤炭技术, 2018, 37(10): 23-25.
doi: 10.1016/0257-8972(89)90118-7 |
FENG Minggang, YAN Wei, ZHU Linqi, et al. Method to predict total gas content in shale reservoir combing boosting-PLS algorithm and conventional logging data[J]. Coal Technology, 2018, 37(10): 23-25.
doi: 10.1016/0257-8972(89)90118-7 |
|
[14] | 朱如凯, 李梦莹, 杨静儒, 等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. |
ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J]. Oil & Gas Geology, 2022, 43(2): 251-264. | |
[15] | 郑爱维, 梁榜, 舒志国, 等. 基于大数据PLS法的页岩气产能影响因素分析——以四川盆地涪陵气田焦石坝区块为例[J]. 天然气地球科学, 2020, 31(4): 542-551. |
ZHENG Aiwei, LIANG Bang, SHU Zhiguo, et al. Analysis of influencing factors of shale gas productivity based on large data technology: A case of Jiaoshiba block in Fuling Gas Field, Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(4): 542-551. | |
[16] | 徐轩, 朱华银, 徐婷, 等. 多层合采气藏分层储量动用特征及判定方法[J]. 特种油气藏, 2015, 22(1): 111-114. |
XU Xuan, ZHU Huayin, XU Ting, et al. Separated reserve producing characteristic and determination in multi-layer commingled producing gas reservoir[J]. Special Oil and Gas Reservoirs, 2015, 22(1): 111-114. | |
[17] | 朱桂良, 孙建芳, 刘中春. 塔河油田缝洞型油藏气驱动用储量计算方法[J]. 石油与天然气地质, 2019, 40(2): 436-442. |
ZHU Guiliang, SUN Jianfang, LIU Zhongchun. An approach to calculate developed reserves in gas drive fractured-vuggy reservoirs in Tahe oilfield[J]. Oil & Gas Geology, 2019, 40(2): 436-442. | |
[18] | 张歧, 吕华, 徐运动, 等. 含水饱和度对低渗砂岩气藏储量动用的影响[J]. 西部探矿工程, 2012, 24(4): 85-87. |
ZHANG Qi, LYU Hua, XU Yundong, et al. Influence of water saturation on reserve production of low permeability sandstone gas reservoir[J]. West-China Exploration Engineering, 2012, 24(4): 85-87. | |
[19] |
贾爱林, 王国亭, 孟德伟, 等. 大型低渗-致密气田井网加密提高采收率对策——以鄂尔多斯盆地苏里格气田为例[J]. 石油学报, 2018, 39(7): 802-813.
doi: 10.7623/syxb201807007 |
JIA Ailin, WANG Guoting, MENG Dewei, et al. Well pattern infilling strategy to enhance oil recovery of giant low-permeability tight gas field: A case study of Sulige gas field, Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(7): 802-813.
doi: 10.7623/syxb201807007 |
|
[20] | 胡罡, 刘维霞. 利用储量动用质量评价储量动用状况的新方法[J]. 石油天然气学报, 2011, 33(9): 60-63. |
HU Gang, LIU Weixia. A new method of evaluating reserves producing status by using reserves producing quality[J]. Journal of Oil and Gas Technology, 2011, 33(9): 60-63. | |
[21] | 胡罡. 储量动用状况定量化表征研究[J]. 成都理工大学学报(自然科学版), 2012, 39(1): 100-103. |
HU Gang. Research on quantitative characterization of evaluating reserves employing status[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(1): 100-103. | |
[22] | 刘亚龙, 王海燕, 王飞. 太阳大寨区块浅层页岩气水平井优快钻井技术研究[J]. 石油和化工设备, 2021, 24(6): 146-148. |
LIU Yalong, WANG Haiyan, WANG Fei. Study on optimal and fast drilling technology for shallow horizontal shale gas well in Taiyang Block[J]. Petro & Chemical Equipment, 2021, 24(6): 146-148. | |
[23] | 梁兴, 单长安, 张朝, 等. 昭通太阳背斜山地浅层页岩气“三维封存体系”富集成藏模式[J]. 地质学报, 2021, 95(11): 3380-3399. |
LIANG Xing, SHAN Changan, ZHANG Zhao, et al. “Three-dimensional closed system” accumulation model of Taiyang anticline mountain shallow shale gas in the Zhaotong demonstration area[J]. Acta Geologica Sinica, 2021, 95(11): 3380-3399. | |
[24] |
梁兴, 徐政语, 张介辉, 等. 浅层页岩气高效勘探开发关键技术——以昭通国家级页岩气示范区太阳背斜区为例[J]. 石油学报, 2020, 41(9): 1033-1048.
doi: 10.7623/syxb202009001 |
LIANG Xing, XU Zhengyu, ZHANG Jiehui, et al. Key efficient exploration and development technoloiges of shallow shale gas: A case study of Taiyang anticline area of Zhaotong National Shale Gas Demonstration Zone[J]. Acta Petrolei Sinica, 2020, 41(9): 1033-1048.
doi: 10.7623/syxb202009001 |
|
[25] | 梁兴, 张朝, 单长安, 等. 山地浅层页岩气勘探挑战、对策与前景——以昭通国家级页岩气示范区为例[J]. 天然气工业, 2021, 41(2): 27-36. |
LIANG Xing, ZHANG Zhao, SHAN Changan, et al. Exploration challenges, countermeasures and prospect of mountain shallow shale gas: A cased study on the Zhaotong National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2021, 41(2): 27-36. |
[1] | 王嘉伟, 张伯虎, 胡尧, 何政毅, 胡欣欣, 陈伟, 罗超. 页岩气储层多期构造应力场反演与裂缝演化 [J]. 油气藏评价与开发, 2024, 14(4): 560-568. |
[2] | 梁孝柏, 鞠玮. 基于拓扑结构分析的断层连通性评价——以川南泸州中区深层页岩气储层多级断层为例 [J]. 油气藏评价与开发, 2024, 14(3): 446-457. |
[3] | 高全芳,张培先,关琳琳,李彦婧,倪锋. 低级别逆断层对页岩气富集高产影响研究——以四川盆地东南缘南川地区平桥东1断层为例 [J]. 油气藏评价与开发, 2024, 14(3): 458-467. |
[4] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[5] | 李京昌, 卢婷, 聂海宽, 冯动军, 杜伟, 孙川翔, 李王鹏. 威荣地区WY23平台页岩气层裂缝地震检测可信度评价 [J]. 油气藏评价与开发, 2023, 13(5): 614-626. |
[6] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[7] | 韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测 [J]. 油气藏评价与开发, 2023, 13(5): 647-656. |
[8] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[9] | 楼章华, 张欣柯, 吴宇辰, 高玉巧, 张培先, 金爱民, 朱蓉. 四川盆地南川地区及邻区页岩气保存差异的流体响应特征 [J]. 油气藏评价与开发, 2023, 13(4): 451-458. |
[10] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[11] | 林魂, 孙新毅, 宋西翔, 蒙春, 熊雯欣, 黄俊和, 刘洪博, 刘成. 基于改进人工神经网络的页岩气井产量预测模型研究 [J]. 油气藏评价与开发, 2023, 13(4): 467-473. |
[12] | 卢比,胡春锋,马军. 南川页岩气田压裂水平井井间干扰影响因素及对策研究 [J]. 油气藏评价与开发, 2023, 13(3): 330-339. |
[13] | 邱小雪,钟光海,李贤胜,陈猛,凌玮桐. 不同井斜页岩气水平井流动特征的CFD模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 340-347. |
[14] | 聂云丽, 高国忠. 基于随机森林的页岩气“甜点”分类方法 [J]. 油气藏评价与开发, 2023, 13(3): 358-367. |
[15] | 张龙胜,王维恒. 阴-非体系高温泡排剂HDHP的研究及应用——以四川盆地东胜页岩气井为例 [J]. 油气藏评价与开发, 2023, 13(2): 240-246. |
|