油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (2): 267-276.doi: 10.13809/j.cnki.cn32-1825/te.2024.02.012
收稿日期:
2023-04-28
发布日期:
2024-05-07
出版日期:
2024-04-26
作者简介:
吴财芳(1976—),男,博士,教授,主要从事非常规天然气勘探开发研究。地址:江苏省徐州市铜山区大学路1号中国矿业大学南湖校区,邮政编码:221116。E-mail:基金资助:
WU Caifang1,2(),GAO Bin1,2,LI Qing3,CHEN Zhenlong3
Received:
2023-04-28
Online:
2024-05-07
Published:
2024-04-26
摘要:
水合物法捕集与封存CO2气体可服务于大规模减排的技术需求,加速“碳中和”目标的实现,对应对气候变化具有重要意义。从气体水合物的基本性质、生成机理及模型,多孔介质中水合物合成,水合物合成的分子动力学模拟等方面,综述了前人针对水合物合成领域的研究现状,提出了气体水合物合成过程中存在的科学问题,并对气体水合物的发展及煤系地层CO2水合物的封存方向进行了评价。研究认为,CO2气体的溶解度是限制准确计算多孔介质中水合物储气量的关键因素;气体水合物的局部结构化(成核)机制复杂,仍需深入研究;高纬度及永久冻土区煤系地层可作为水合物法封存CO2气体的地下空间。
中图分类号:
Caifang WU,Bin GAO,Qing LI, et al. Research progress of gas hydrate synthesis[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(2): 267-276.
表2
水合物类型及参数"
水合物 类型 | 水合物参数 | ||||||||
---|---|---|---|---|---|---|---|---|---|
联结孔 类型 | 联结孔 数量 | 联结孔平均 直径/nm | 晶胞结构 | 晶格棱长 参数/nm | 晶格轴角 参数/(° ) | 晶胞结构式 | 配位数 | 空间群 | |
Ⅰ型 | 大 | 6 | 0.433 | 体心立方 | a=1.200 | α=β=γ=90° | 6(51262)·2(512)·46H2O | 24 | Pm3n(第223号) |
小 | 2 | 0.395 | 20 | ||||||
Ⅱ型 | 大 | 8 | 0.473 | 面心立方 | a=1.730 | α=β=γ=90° | 8(51264)·16(512)·136H2O | 28 | Pd3m(第227号) |
小 | 16 | 0.391 | 20 | ||||||
H型 | 大 | 1 | 0.579 | 简单六方 | a=1.226 c=1.017 | α=β=90° γ=120° | 1(51268)·3(512)2(435663)·34H2O | 36 | P6/mmm(第191号) |
中 | 2 | 0.404 | 20 | ||||||
小 | 3 | 0.394 | 20 |
[1] | AKTAR M A, ALAM M M, AL-AMIN A Q. Global economic crisis, energy use, CO2 emissions, and policy roadmap amid COVID-19[J]. Sustain Prod Consum, 2021, 26: 770-781. |
[2] | TRACKER C A. A government roadmap for addressing the climate and post COVID-19 economic crises[R/OL]. (2020-04-27)[2023-03-02]. https://climateactiontracker.org/publications/addressing-the-climate-and-post-covid-19-economic-crises. |
[3] | 李鹭光, 孙秀娟, 王祖纲. 世界石油工业在变局中加快绿色低碳转型: 专访世界石油理事会副主席李鹭光先生[J]. 世界石油工业, 2022, 29(4): 1-6. |
LI Luguang, SUN Xiujuan, WANG Zugang. Quick low-carbon transition of petroleum industry in world change: Interview with LI Luguang, vice president of the World Petroleum Council[J]. World Petroleum Industry, 2022, 29(4): 1-6. | |
[4] | 苏义脑. 中国碳达峰碳中和与能源发展战略的认识与思考[J]. 世界石油工业, 2022, 29(4): 7-11. |
SU Yinao. Understandings and thinkings of China's carbon peaking, carbon neutrality and energy development strategies[J]. World Petroleum Industry, 2022, 29(4): 7-11. | |
[5] | 苏娟, 李沂, 卢颖, 等. 大变局下的能源安全与低碳转型: 第五届中国石油国际合作论坛综述[J]. 世界石油工业, 2022, 29(6): 13-18. |
SU Juan, LI Yi, LU Ying, et al. Energy security and low-carbon transition in the changing world: Overview of the 5th CNPC International Cooperation Forum[J]. World Petroleum Industry, 2022, 29(6): 13-18. | |
[6] | 梁玲, 王璐, 孙静, 等. 全球碳排放增长分析与启示[J]. 世界石油工业, 2022, 29(6): 48-53. |
LIANG Ling, WANG Lu, SUN Jing, et al. Analysis and enlightenment of global carbon emission growth[J]. World Petroleum Industry, 2022, 29(6): 48-53. | |
[7] | 周银邦, 王锐, 赵淑霞, 等. CO2封存过程中“适应性”地质建模方法及案例[J]. 非常规油气, 2022, 9(6): 1-8. |
ZHOU Yinbang, WANG Rui, ZHAO Shuxia, et al. “Fit to purpose” geological modeling methods and cases in the process of CO2 storage[J]. Unconventional Oil & Gas, 2022, 9(6): 1-8. | |
[8] | 张明龙, 王磊, 崔强, 等. 二氧化碳驱油储层物性变化实验研究[J]. 世界石油工业, 2023, 30(3): 90-96. |
ZHANG Minglong, WANG Lei, CUI Qiang, et al. Experimental study on reservoir physical property change of carbon dioxide flooding[J]. World Petroleum Industry, 2023, 30(3): 90-96. | |
[9] | 邹才能, 薛华庆, 熊波, 等. “碳中和”的内涵、创新与愿景[J]. 天然气工业, 2021, 41(8): 46-57. |
ZOU Caineng, XUE Huaqing, XIONG Bo, et al. Connotation,innovation and vision of “carbon neutral”[J]. Natural Gas Industry, 2021, 41(8): 46-57. | |
[10] |
HAO S Q, KIM S, QIN Y, et al. Enhanced CO2 gas storage in coal[J]. Industrial & Engineering Chemistry Research, 2013, 52(51): 18492-18497.
doi: 10.1021/ie403697q |
[11] | SONG Y C, WANG S J, CHENG Z C, et al. Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods[J]. Chemical Engineering Journal, 2021, (415): 128937. |
[12] |
SONG Y C, ZHOU H, MA S H, et al. CO2 sequestration in depleted methane hydrate deposits with excess water[J]. International Journal of Energy Research, 2018, 42(7): 2536-2547.
doi: 10.1002/er.v42.7 |
[13] |
ZHANG X M, LI J P, WU Q B, et al. Experimental study on the effect of pore size on carbon dioxide hydrate formation and storage in porous media[J]. Journal of Natural Gas Science and Engineering, 2015, 25: 297-302.
doi: 10.1016/j.jngse.2015.05.014 |
[14] |
ZHONG D L, SUN D J, LU Y Y, et al. Adsorption-hydrate hybrid process for methane separation from a CH4/N2/O2 gas mixture using pulverized coal particles[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15738-15746.
doi: 10.1021/ie502684j |
[15] |
WEN Z A, YAO Y B, LUO W J, et al. Memory effect of CO2-hydrate formation in porous media[J]. Fuel, 2021, 299: 120922.
doi: 10.1016/j.fuel.2021.120922 |
[16] |
BARMAVATH T, MEKALA P, SANGWAI J S. Prediction of phase stability conditions of gas hydrates of methane and carbon dioxide in porous media[J]. Journal of natural gas science and engineering, 2014, 18: 254-262.
doi: 10.1016/j.jngse.2014.03.006 |
[17] |
CHARI V D, SHARMA D V S G, PRASAD P S R, et al. Methane hydrates formation and dissociation in nano silica suspension[J]. Journal of Natural Gas Science and Engineering, 2013, 11: 7-11.
doi: 10.1016/j.jngse.2012.11.004 |
[18] | BUCH V, DEVLIN J P, MONREAL I A, et al. Clathrate hydrates with hydrogen-bonding guests[J]. Physical Chemistry Chemical Physics, 2009, 11(44): 10245. |
[19] |
SUN D, ENGLEZOS P. Storage of CO2 in a partially water saturated porous medium at gas hydrate formation conditions[J]. International journal of greenhouse gas control, 2014, 25: 1-8.
doi: 10.1016/j.ijggc.2014.03.008 |
[20] | 魏国栋. 石英砂中水合物法储存二氧化碳的静态实验研究[D]. 兰州: 兰州理工大学, 2011. |
WEI Guodong. Static experiment study on the hydrate storage of CO2 in quartzite[D]. Lanzhou: Lanzhou University of Technology, 2011. | |
[21] | KHOKHAR A A, GUDMUNDSSON J S, SLOAN E D. Gas storage in structure H hydrates[J]. Fluid Phase Equilibria, 1998, 150-151: 383-392. |
[22] |
RIPMEESTER J A. Hydrate research-from correlations to a knowledge-based discipline: The importance of structure[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 1-16.
doi: 10.1111/nyas.2000.912.issue-1 |
[23] |
RATCLIFFE C I, RIPMEESTER J A. 1H and 13C NMR studies on carbon dioxide hydrate[J]. Journal of physical chemistry, 1986, 90(7): 1259-1263.
doi: 10.1021/j100398a012 |
[24] |
FLEYFEL F, DEVLIN J P. Carbon dioxide clathrate hydrate epitaxial growth: spectroscopic evidence for formation of the simple type-Ⅱ CO2 hydrate[J]. Journal of physical chemistry, 1991, 95(9): 3811-3815.
doi: 10.1021/j100162a068 |
[25] |
ZHANG X M, YANG H J, HUANG T T, et al. Research progress of molecular dynamics simulation on the formation-decomposition mechanism and stability of CO2 hydrate in porous media: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112820.
doi: 10.1016/j.rser.2022.112820 |
[26] |
BOLLENGIER O, CHOUKROUN M, GRASSET O, et al. Phase equilibria in the H2O-CO2 system between 250-330 K and 0-1.7 GPa: Stability of the CO2 hydrates and H2O-ice Ⅵ at CO2 saturation[J]. Geochimica et Cosmochimica Acta, 2013, 119: 322-339.
doi: 10.1016/j.gca.2013.06.006 |
[27] |
YANG X F, DU S, HAO Y C, et al. Molecular dynamics simulation of promoting nucleation of CO2 hydrate by ethylene oxide and tetrahydrofuran[J]. IOP conference series. Earth and environmental science, 2021, 675(1): 12183.
doi: 10.1088/1755-1315/675/1/012183 |
[28] |
XU J F, DU S, HAO Y C, et al. Molecular simulation study of methane hydrate formation mechanism in NaCl solutions with different concentrations[J]. Chemical Physics, 2021, 551: 111323.
doi: 10.1016/j.chemphys.2021.111323 |
[29] |
CAO X W, WANG H C, YANG K R, et al. Hydrate-based CO2 sequestration technology: Feasibilities, mechanisms, influencing factors, and applications[J]. Journal of Petroleum Science and Engineering, 2022, 219: 111121.
doi: 10.1016/j.petrol.2022.111121 |
[30] | Van der WAALS J H, PLATTEEUW J C. Clathrate Solutions[J]. Advance in Chemical Physics, 1959, 2: 1-57. |
[31] |
PARRISH W R, PRAUSNITZ J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Ind. Eng. Chem. Process Des. Develop., 1972, 11(1): 26-35.
doi: 10.1021/i260041a006 |
[32] | NG H J, ROBINSON D B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems[J]. Industrial & engineering chemistry fundamentals, 1976, 15(4): 293-298. |
[33] | JOHN V T, HOLDER G D. Langmuir constants for spherical and linear molecules in clathrate hydrates. Validity of the cell theory[J]. Journal of physical chemistry, 1985, 89(15): 3279-3285. |
[34] |
BALLARD A L, SLOAN E D, Jr. The next generation of hydrate prediction: I. Hydrate standard states and incorporation of spectroscopy[J]. Fluid Phase Equilibria, 2002, 194-197: 371-383.
doi: 10.1016/S0378-3812(01)00697-5 |
[35] |
CHEN G J, GUO T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid phase equilibria, 1996, 122(1): 43-65.
doi: 10.1016/0378-3812(96)03032-4 |
[36] |
ENGLEZOS P, KALOGERAKIS N, DHOLABHAI P D, et al. Kinetics of formation of methane and ethane gas hydrates[J]. Chemical Engineering Science, 1987, 42(11): 2647-2658.
doi: 10.1016/0009-2509(87)87015-X |
[37] | KANG Q J, ZHANG D X, LICHTNER P C, et al. Lattice Boltzmann model for crystal growth from supersaturated solution[J]. Geophysical Research Letters, 2004, 31(21): 133-147. |
[38] |
KLAUDA J B, SANDLER S I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3377-3386.
doi: 10.1021/ie000322b |
[39] |
SLOAN E D Jr. Fundamental principles and applications of natural gas hydrates[J]. Nature, 2003, 426: 353-359.
doi: 10.1038/nature02135 |
[40] |
SLOAN E D Jr, FLEYFEL F. A molecular mechanism for gas hydrate nucleation from ice[J]. AIChE journal, 1991, 37(9): 1281-1292.
doi: 10.1002/aic.v37:9 |
[41] |
CHRISTIANSEN R L, SLOAN E D. Mechanisms and kinetics of hydrate formation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 283-305.
doi: 10.1111/nyas.1994.715.issue-1 |
[42] |
RADHAKRISHNAN R, TROUT B L. A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates[J]. The Journal of Chemical Physics, 2002, 117(4): 1786-1796.
doi: 10.1063/1.1485962 |
[43] |
HE Z J, LINGA P, JIANG J W. What are the key factors governing the nucleation of CO2 hydrate?[J]. Physical Chemistry Chemical Physics, 2017, 19(24): 15657-15661.
doi: 10.1039/C7CP01350G |
[44] | 胡腾. 石英砂、铜丝网存在下四氢呋喃水合物生长过程研究[D]. 广州: 华南理工大学, 2015. |
HU Teng. Studies of tetrahydrofuran hydrate growth in the presence of quartz sand and cooper wire[D]. Guangzhou: South China University of Technology, 2015. | |
[45] |
GAO Q, ZHAO J Z, YIN Z Y, et al. Experimental study on methane hydrate formation in quartz sand under tri-axial condition[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103707.
doi: 10.1016/j.jngse.2020.103707 |
[46] | DVORKIN J, HELGERUD M B, WAITE W F, et al. Introduction to physical properties and elasticity models[J]. Coastal Systems and Continental Margins, 2000, 5: 245-260. |
[47] | CASCO M E, SILVESTRE-ALBERO J, RAMÍREZ-CUESTA A J, et al. Methane hydrate formation in confined nanospace can surpass nature[J]. Nature communications, 2015, 6(1): 6432. |
[48] |
RIESTENBERG D, WEST O, LEE S, et al. Sediment surface effects on methane hydrate formation and dissociation[J]. Marine Geology, 2003, 198(1-2): 181-190.
doi: 10.1016/S0025-3227(03)00100-2 |
[49] | LEE M W, COLLETT T S. Elastic properties of gas hydrate-bearing sediments[J]. Geophysical, 2001, 66(3): 763-771. |
[50] |
ZHAO Y S, ZHAO J Z, SHI D X, et al. Micro-CT analysis of structural characteristics of natural gas hydrate in porous media during decomposition[J]. Journal of Natural Gas Science and Engineering, 2016, 31: 139-148.
doi: 10.1016/j.jngse.2016.02.054 |
[51] |
UCHIDA T, EBINUMA T, TAKEYA S, et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media[J]. The Journal of Physical Chemistry B, 2002, 106(4): 820-826.
doi: 10.1021/jp012823w |
[52] |
LU H, MATSUMOTO R. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column[J]. Geochemical Journal, 2002, 36(1): 21-30.
doi: 10.2343/geochemj.36.21 |
[53] |
CLARKE M A, POOLADI-DARVISH M, BISHNOI P R. A method to predict equilibrium conditions of gas hydrate formation in porous media[J]. Industrial & Engineering Chemistry Research, 1999, 38(6): 2485-2490.
doi: 10.1021/ie980625u |
[54] | 陈强, 业渝光, 刘昌岭, 等. 多孔介质体系中甲烷水合物生成动力学的模拟实验[J]. 海洋地质与第四纪地质, 2007, 27(1): 111-116. |
CHEN Qiang, YE Yuguang, LIU Cangling, et al. Research on formation kinetics of methane hydrate in porous media[J]. Marine Geology & Quaternary Geology, 2007, 27(1): 111-116. | |
[55] | 孙始财, 业渝光, 刘昌岭, 等. 甲烷水合物在石英砂中生成过程研究[J]. 石油与天然气化工, 2011, 40(2): 123-127. |
SUN Shicai, YE Yuguang, LIU Changling, et al. Research of methane hydrate formation process in quartz sand[J]. Chemical Engineering of Oil & GAS, 2011, 40(2): 123-127. | |
[56] | 杨明军, 宋永臣, 刘瑜. 多孔介质及盐度对甲烷水合物相平衡影响[J]. 大连理工大学学报, 2011, 51(1): 31-35. |
YANG Mingjun, SONG Yongchen, LIU Yu. Effect of porous media and salinity on phase equilibrium of methane hydrates[J]. Journal of Dalian University of Technology, 2011, 51(1): 31-35. | |
[57] | 苏向东. 多孔介质+THF+TBAB体系煤层气水合物生成实验及理论研究[D]. 太原: 太原理工大学, 2016. |
SUN Xiandong. Experiment and theoretical research for formation of coal-bed methane hydrate in porous media+THF+TBAB System[D]. Taiyuan: Taiyuan University of Technology, 2016. | |
[58] |
SEO Y, LEE H, UCHIDA T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels: Three-phase equilibrium determination and thermodynamic modeling[J]. Langmuir, 2002, 18(24): 9164-9170.
doi: 10.1021/la0257844 |
[59] | MAKOGON Y F. Hydrates of natural gas[M]. Moscow: Nedra, 1974. |
[60] |
SMIRNOV V G, MANAKOV A Y, UKRAINTSEVA E A, et al. Formation and decomposition of methane hydrate in coal[J]. Fuel, 2016, 166: 188-195.
doi: 10.1016/j.fuel.2015.10.123 |
[61] |
DYRDIN V V, SMIRNOV V G, SHEPELEVA S A. Parameters of methane condition during phase transition at the outburst-hazardous coal seam edges[J]. Journal of mining science, 2014, 49(6): 908-912.
doi: 10.1134/S1062739149060099 |
[62] | 曹代勇, 秦荣芳, 王安民, 等. 青海木里三露天井田煤系天然气水合物成藏模式与勘查开发建议[J]. 煤田地质与勘探, 2022, 50(3): 92-101. |
CAO Daiyong, QIN Rongfang, WANG Anmin, et al. Accumulation model and exploration and development suggestions of coal measure gas hydrates in Sanlutian area of Muli Coalfield, Qinghai Province[J]. Coal Geology & Exploration, 2022, 50(3): 92-101. | |
[63] | 殷祥, 文怀军, 张文, 等. 木里煤田三露天天然气水合物与煤层关系探讨[J]. 煤炭工程, 2016, 48(6): 119-122. |
YIN Xiang, WEN Huaijun, ZHANG Wen, et al. Discussion on relationship between coal bed and natural gas hydrates in Sanlutian of Muli Coalfield[J]. Coal Engineering, 2016, 48(6): 119-122. | |
[64] |
HAO S Q, KIM S, QIN Y, et al. Enhanced methane hydrate storage using sodium dodecyl sulfate and coal[J]. Environmental chemistry letters, 2014, 12(2): 341-346.
doi: 10.1007/s10311-013-0450-2 |
[65] |
GAO B, WU C F, SONG Y, et al. Effects of coalification on nano-micron scale pore development: From bituminous to semi-anthracite[J]. Journal of Natural Gas Science and Engineering, 2022, 105: 104681.
doi: 10.1016/j.jngse.2022.104681 |
[66] |
KUMAR A, SAKPAL T, LINGA P, et al. Impact of fly ash impurity on the hydrate-based gas separation process for carbon dioxide capture from a flue gas mixture[J]. Industrial & Engineering Chemistry Research, 2014, 53(23): 9849-9859.
doi: 10.1021/ie5001955 |
[67] | WALSH M R, KOH C A, SLOAN D E, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth[J]. Science(American Association for the Advancement of Science), 2009, 326(5956): 1095-1098. |
[68] |
LI Y, HAN S B, ZHANG B F, et al. Nucleation and dissociation of carbon dioxide hydrate in the inter- and intra-particle pores of dioctahedral smectite: Mechanistic insights from molecular dynamics simulations[J]. Applied Clay Science, 2022, 216: 106344.
doi: 10.1016/j.clay.2021.106344 |
[69] |
TUNG Y T, CHEN L J, CHEN Y P, et al. The growth of structure I methane hydrate from molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2010, 114(33): 10804-10813.
doi: 10.1021/jp102874s |
[70] | LIANG S, ROZMANOV D, KUSALIK P G. Crystal growth simulations of methane hydrates in the presence of silica surfaces[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19856. |
[71] | 周佳丽. CO2水合物生成特性的分子动力学模拟[D]. 上海: 上海理工大学, 2020. |
ZHOU Jiali. Melecular dynamic simulations of CO2 hydrate formation[D]. Shanghai: University of Shanghai for Science & Technology, 2020. | |
[72] |
BAGHERZADEH S A, ENGLEZOS P, ALAVI S, et al. Molecular modeling of the dissociation of methane hydrate in contact with a silica surface[J]. The Journal of Physical Chemistry B, 2012, 116(10): 3188-3197.
doi: 10.1021/jp2086544 |
[73] | BAI D S, ZHANG X R, CHEN G J, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations[J]. Energy & environmental science, 2012, 5(5): 733-741. |
[74] |
BAI D S, CHEN G J, ZHANG X R, et al. Nucleation of the CO2 hydrate from three-phase contact lines[J]. Langmuir, 2012, 28(20): 7730-7736.
doi: 10.1021/la300647s |
[75] |
BAI D S, LIU B, CHEN G J, et al. Role of guest molecules on the hydrate growth at vapor-liquid interfaces[J]. AIChE journal, 2013, 59(7): 2621-2629.
doi: 10.1002/aic.v59.7 |
[76] | BAI D S, CHEN G J, ZHANG X R, et al. How properties of solid surfaces modulate the nucleation of gas hydrate[J]. Scientific Reports, 2015, 5(1): 1-12. |
[77] | LI Y, CHEN M, TANG H, et al. Insights into carbon dioxide hydrate nucleation on the external basal surface of clay minerals from molecular dynamics simulations[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(19): 6358-6369. |
[78] |
LI Y, CHEN M, SONG H Z, et al. Methane hydrate formation in the stacking of kaolinite particles with different surface contacts as nanoreactors: A molecular dynamics simulation study[J]. Applied Clay Science, 2020, 186: 105439.
doi: 10.1016/j.clay.2020.105439 |
[79] |
YAN K F, LI X S, CHEN Z Y, et al. Molecular dynamics simulation of the crystal nucleation and growth behavior of methane hydrate in the presence of the surface and nanopores of porous sediment[J]. Langmuir, 2016, 32(31): 7975-7984.
doi: 10.1021/acs.langmuir.6b01601 |
[80] | 白冬生. 气体水合物成核与生长的分子动力学模拟研究[D]. 北京: 北京化工大学, 2013. |
BAI Dongsheng. Molecualr dynamics simulation study of THE nucleation and growth of gas hydrates[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
[81] |
BAI D S, CHEN G J, ZHANG X R, et al. Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces[J]. Langmuir, 2011, 27(10): 5961-5967.
doi: 10.1021/la105088b pmid: 21486061 |
[82] |
KYUNG D, LIM H, KIM H, et al. CO2 hydrate nucleation kinetics enhanced by an organo-mineral complex formed at the montmorillonite-water interface[J]. Environmental Science & Technology, 2015, 49(2): 1197-1205.
doi: 10.1021/es504450x |
[1] | 何志勇,郭本帅,汪东,毛松柏,李忠于. CO2捕集和利用技术的应用与研发进展 [J]. 油气藏评价与开发, 2024, 14(1): 70-75. |
[2] | 叶晓东,陈军,陈曦,王海妹,王慧珺. “双碳”目标下的中国CCUS技术挑战及对策 [J]. 油气藏评价与开发, 2024, 14(1): 1-9. |
[3] | 崔玉东, 陆程, 关子越, 罗万静, 滕柏路, 孟凡璞, 彭越. 南海海域天然气水合物降压开采储层蠕变对气井产能影响 [J]. 油气藏评价与开发, 2023, 13(6): 809-818. |
[4] | 杨作亚,武晓敏. 天然气水合物藏多层联合开采数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(3): 393-402. |
[5] | 于倩男,张涵,李宁,唐慧敏,李承龙,吴卓霖,彭威. 天然气水合物藏开发品质评价研究 [J]. 油气藏评价与开发, 2023, 13(3): 385-392. |
[6] | 向雪妮,黄亮,周文,邹杰,张卓雅. 基于分子模拟的气体水合物结构特征及储气特性研究 [J]. 油气藏评价与开发, 2022, 12(5): 825-832. |
[7] | 赵克斌,孙长青,郭嘉琪,吴传芝. 墨西哥湾天然气水合物富集特征与成藏机制——以WR313和GC955研究区为例 [J]. 油气藏评价与开发, 2021, 11(5): 669-679. |
[8] | 康玉柱. 中国南海地块天然气水合物成藏条件探讨 [J]. 油气藏评价与开发, 2021, 11(5): 659-668. |
[9] | 曹绪龙,季岩峰,祝仰文,赵方剑. 聚合物驱研究进展及技术展望 [J]. 油气藏评价与开发, 2020, 10(6): 8-16. |
[10] | 徐旭辉,申宝剑,李志明,张文涛,俞凌杰,马中良. 页岩气实验地质评价技术研究现状及展望 [J]. 油气藏评价与开发, 2020, 10(1): 1-8. |
[11] | 张益,沈磊,田喜军,胡均志,刘鹏. 基于水露点分析的气田集气站注醇量优化——以子洲气田集气站为例 [J]. 油气藏评价与开发, 2018, 8(5): 60-63. |
|