油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (4): 618-628.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.012

• 矿场应用 • 上一篇    下一篇

分布式光纤传感技术在水力压裂中的研究进展

卢聪(),李秋月,郭建春   

  1. 西南石油大学油气藏地质及开发工程全国重点实验室,四川 成都 610500
  • 收稿日期:2023-08-18 发布日期:2024-09-10 出版日期:2024-08-26
  • 通讯作者: 李秋月(1998—),女,在读博士研究生,从事油气藏增产改造理论与技术研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:2564399756@qq.com
  • 作者简介:卢聪(1983—),男,博士,教授,从事油气藏增产改造理论与技术的教学研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:lucong@swpu.edu.cn
  • 基金资助:
    国家自然科学基金项目“致密油气藏压裂酸化裂缝长效支撑机制”(52022087);四川省科技计划项目“页岩气暂堵转向压裂颗粒运动机理与裂缝扩展机制”(2023JDRC0008)

Research progress of distributed optical fiber sensing technology in hydraulic fracturing

LU Cong(),LI Qiuyue,GUO Jianchun   

  1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China
  • Received:2023-08-18 Online:2024-09-10 Published:2024-08-26

摘要:

分布式光纤传感技术作为最新的水力压裂监测技术,应用于各大油田的水力压裂过程中,并且能够实现实时监测,已取得了显著的应用效果。为使业界进一步了解不同类型传感技术的基本原理、理论模型研究进展、现场应用情况,从分布式光纤温度传感技术和声波传感技术在水力压裂过程中的监测基本原理出发,系统总结了各类传感技术的理论模型研究进展和在产液剖面、裂缝扩展形态监测等方面的应用现状,最后提出了未来分布式光纤传感技术的发展方向。研究结果表明:①分布式光纤传感技术可以利用温度或者声波信号转换得到周围环境温度或应变的变化情况,从而实现水力压裂过程中的实时监测;②与分布式光纤声波传感技术相比,温度传感技术的相关理论模型相对较为成熟,能够实现产液剖面及裂缝形态的相关计算;③分布式光纤传感技术主要用于水力压裂过程中压裂液的注入、裂缝扩展等方面的监测。结论认为:分布式光纤传感技术可以有效地推动中国非常规储层的勘探和开发,同时提高水力压裂效果评价技术水平,这对中国油气行业的可持续发展具有重要推动作用。

关键词: 分布式光纤传感技术, 温度传感技术, 声波传感技术, 水力压裂监测, 产液剖面, 裂缝扩展

Abstract:

Distributed optical fiber sensing technology, a cutting-edge method for monitoring hydraulic fracturing, has been successfully applied in various oil fields to enable real-time monitoring, achieving notable results. This paper aims to enhance industry understanding of the basic principles, theoretical model research progress, and field applications of different types of sensing technologies. The discussion begins with the foundational principles of distributed optical fiber temperature sensing and acoustic sensing technologies used in hydraulic fracturing. It systematically reviews the research progress of theoretical models for these technologies and their application in monitoring liquid production profiles and crack propagation morphologies. The paper concludes by suggesting future directions for the development of distributed fiber sensing technology. The findings indicate that: ① Distributed optical fiber sensing technology can convert temperature or acoustic wave signals into data reflecting ambient temperature or strain changes, facilitating real-time monitoring during hydraulic fracturing. ② Maturity of Temperature Sensing Models: Compared to acoustic sensing, the theoretical models for temperature sensing technology are more mature, enabling accurate calculations of liquid production profiles and fracture morphologies. ③ Application in Hydraulic Fracturing: The technology is primarily used to monitor fracturing fluid injection and fracture propagation, crucial aspects of the hydraulic fracturing process. In conclusion, distributed optical fiber sensing technology significantly advances the exploration and development of unconventional reservoirs in China. It enhances hydraulic fracturing effect evaluation techniques, playing a vital role in the sustainable development of the Chinese oil and gas industry.

Key words: distributed optical fiber sensing technology, temperature sensing technology, acoustic wave sensing technology, hydraulic fracturing monitoring, liquid production profile, fracture propagation

中图分类号: 

  • TE355