油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (4): 618-628.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.012
收稿日期:
2023-08-18
发布日期:
2024-09-10
出版日期:
2024-08-26
通讯作者:
李秋月(1998—),女,在读博士研究生,从事油气藏增产改造理论与技术研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:2564399756@qq.com
作者简介:
卢聪(1983—),男,博士,教授,从事油气藏增产改造理论与技术的教学研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:基金资助:
LU Cong(),LI Qiuyue,GUO Jianchun
Received:
2023-08-18
Online:
2024-09-10
Published:
2024-08-26
摘要:
分布式光纤传感技术作为最新的水力压裂监测技术,应用于各大油田的水力压裂过程中,并且能够实现实时监测,已取得了显著的应用效果。为使业界进一步了解不同类型传感技术的基本原理、理论模型研究进展、现场应用情况,从分布式光纤温度传感技术和声波传感技术在水力压裂过程中的监测基本原理出发,系统总结了各类传感技术的理论模型研究进展和在产液剖面、裂缝扩展形态监测等方面的应用现状,最后提出了未来分布式光纤传感技术的发展方向。研究结果表明:①分布式光纤传感技术可以利用温度或者声波信号转换得到周围环境温度或应变的变化情况,从而实现水力压裂过程中的实时监测;②与分布式光纤声波传感技术相比,温度传感技术的相关理论模型相对较为成熟,能够实现产液剖面及裂缝形态的相关计算;③分布式光纤传感技术主要用于水力压裂过程中压裂液的注入、裂缝扩展等方面的监测。结论认为:分布式光纤传感技术可以有效地推动中国非常规储层的勘探和开发,同时提高水力压裂效果评价技术水平,这对中国油气行业的可持续发展具有重要推动作用。
中图分类号:
Cong LU,Qiuyue LI,Jianchun GUO. Research progress of distributed optical fiber sensing technology in hydraulic fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628.
[1] | HOLLEY E H, KALIA N. Fiber-optic monitoring: Stimulation results from unconventional reservoirs[C]// Paper URTEC-2151906-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, Texas, USA, July 2015. |
[2] | KAPRON F P, MAURER R D, TETER M P. Theory of back scattering effects in wave guides[J]. Applied Optics, 1972, 11(6): 1352-1356. |
[3] | SOOKPRASONG P A, GILL C C, HURT R S. Lessons learned from DAS and DTS in multicluster, multistage horizontal well fracturing: Interpretation of hydraulic fracture initiation and propagation through diagnostics[C]// Paper SPE-170512-MS presented at the IADC/SPE Asia Pacific Drilling Technology Conference, Bangkok, Thailand, August 2014. |
[4] | PATEL D, WEE K, GORGI S, et al. Success story: 64 wells with hybrid real time DTS/DAS monitoring and permanent downhole gauges installed in the United Arab Emirates[C]// Paper SPE-202681-MS presented at the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, November 2020. |
[5] | 张春池, 彭文泉, 高兵艳, 等. 山东省页岩气有利勘探层系与资源评价[J]. 油气地质与采收率, 2019, 26(2): 7-13. |
ZHANG Chunchi, PENG Wenquan, GAO Bingyan, et al. Favorable exploration strata and resource evaluation of shale gas in Shandong Province[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 7-13. | |
[6] | 杨兆中, 陈倩, 李小刚, 等. 鄂尔多斯盆地低渗透致密砂岩气藏水平井分段多簇压裂布缝优化研究[J]. 油气地质与采收率, 2019, 26(2): 120-126. |
YANG Zhaozhong, CHEN Qian, LI Xiaogang, et al. Optimization of multi-cluster staged fracturing for horizontal well in low-permeability tight sandstone gas reservoir, Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(2): 120-126. | |
[7] | 李亚辉. 基于DTS数据的底水气藏水平井产出剖面解释模型及实现[D]. 成都: 西南石油大学, 2018. |
LI Yahui. Production profile interpretation model and its software development based on DTS data for horizontal well in bottom water gas reservoir[D]. Chengdu: Southwest Petroleum University, 2018. | |
[8] | DALEY T M, FREIFELD B M, AJO-FRANKLIN J, et al. Field testing of fiber-optic distributed acoustic sensing( DAS ) for subsurface seismic monitoring[J]. The Leading Edge, 2013, 32(6): 936-942. |
[9] | HARTOG A, FRIGNET B, MACKIE D, et al. Vertical seismic optical profiling on wireline logging cable[J]. Geophysical Prospecting, 2014, 62(4): 693-701. |
[10] | JIANG T, ZHAN G, HANCE T, et al. Valhall dual-well 3D DAS VSP field trial and imaging for active wells[C]// Paper SEG-2016-13871754 presented at the 2016 SEG International Exposition and Annual Meeting, Dallas, Texas, October 2016. |
[11] | 隋微波, 张迪, 王梦雨, 等. 智能完井温度监测技术在油气田开发中的应用及理论模型研究进展[J]. 油气地质与采收率, 2020, 27(3): 129-138. |
SUI Weibo, ZHANG Di, WANG Mengyu, et al. Review on application and theoretical models for temperature monitoring technology under intelligent well completion conditions in oil and gas field development[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(3): 129-138. | |
[12] |
ROGERS A J. Polarization-optical time domain reflectometry: A technique for the measurement of field distributions[J]. Applied Optics, 1981, 20(6):1060-1074.
doi: 10.1364/AO.20.001060 pmid: 20309260 |
[13] |
BARNOSKI M K, ROURKE M D, JENSEN S M, et al. Optical time domain reflectometer[J]. Applied Optics, 1977, 16(9): 2375-2379.
doi: 10.1364/AO.16.002375 pmid: 20168934 |
[14] | 尚军辉. 光纤测温技术的原理与技术特点[J]. 中国石油和化工标准与质量, 2012, 32(增刊1): 61. |
SHANG Junhui. Principle and technical characteristics of optical fiber temperature measurement technology[J]. China Petroleum and Chemical Standard and Quality, 2012, 32(suppl. 1): 61. | |
[15] | 孙国善, 侯思祖, 陈超. 拉曼光纤测温原理及在电力系统中的应用[J]. 电力科学与工程, 2010, 26(3): 26-29. |
SUN Guoshan, HOU Sizu, CHEN Chao. Raman optical fiber temperature measurement principle and application in power system[J]. Electric Power Science and Engineering, 2010, 26(3): 26-29. | |
[16] | 黄健. 基于拉曼散射的分布式光纤测温系统的优化研究[D]. 桂林: 广西师范大学, 2022. |
HUANG Jian. Optimization of distributed optical fiber temperature measurement system based on Raman scattering[D]. Guilin:Guangxi Normal University, 2022. | |
[17] | 韩永温, 郝文杰, 张林行, 等. 基于拉曼散射原理的分布式光纤测温系统研究[J]. 半导体光电, 2013, 34(2): 342-345. |
HAN Yongwen, HAO Wenjie, ZHANG Linxing, et al. Research of distributed optical fiber temperature measurement system based on Raman scattering principle[J]. Semiconductor Optoelectronics, 2013, 34(2): 342-345. | |
[18] |
JUSKAITIS R, MAMEDOV A M, POTAPOV V T, et al. Distributed interferometric fiber sensor system[J]. Optics Letters, 1992, 17(22): 1623-1625.
pmid: 19798266 |
[19] | JUSKAITIS R, MAMEDOV A M, POTAPOV V T, et al. Interferometry with Rayleigh back scattering in a single-mode optical fiber[J]. Optics Letters, 1994, 19(3): 225-227. |
[20] | SHATALIN S V, TRESCHIKOV V N, Rogers A J. Interferometric optical time domain reflectometry for distributed optical fiber sensing[J]. Applied Optics, 1998, 37(24): 5600-5604. |
[21] | 李康. 光纤分布式声波传感系统的信号增强及其处理的研究[D]. 成都: 电子科技大学, 2019. |
LI Kang. Research on signal enhancement and processing of fiber distributed acoustic sensor system[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
[22] | JIN G, UGUETO G, WOJTASZEK M, et al. Novel near-wellbore fracture diagnosis for unconventional wells using high-resolution distributed strain sensing during production[J]. SPE Journal, 2021, 26(5): 3255-3264. |
[23] | SAMUELSON M, HARRIS S, SCHRADER K. Successful installation of a down-hole fiber optic wetmate connection system[C]// Paper SPE-201349-MS presented at the SPE Annual Technical Conference and Exhibition, Virtual, October 2020. |
[24] | SANNI M, HVEDING F, KOKAL S. Lessons learned from in-well fiber-optic DAS/DTS deployment[C]// Paper SPE-191470-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 2018. |
[25] | AL SHOAIBI S S, FLOREZ J C, AL FARSI S. The first behind-casing fiber-optic installation in a high-pressure high-temperature deep gas well in Oman[C]// Paper SPE-205275-MS presented at the SPE International Hydraulic Fracturing Technology Conference & Exhibition, Muscat, Oman, January 2022. |
[26] | RAMEY H J. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427-435. |
[27] | SATTER A. Heat losses during flow of steam down a wellbore[J]. Journal of Petroleum Technology, 1965, 17(7): 845-851. |
[28] | SHIU K C, BEGGS H D. Predicting temperatures in flowing oil wells[J]. Journal of Energy Resources Technology, 1980, 102(1): 2-11. |
[29] | WILHITE G P. Over-all heat transfer coefficients in steam and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607-615. |
[30] | SAGAR R, DOTY D R, SCHMIDT Z. Predicting temperature profiles in a flowing well[J]. SPE Production Engineering, 1991, 6(4): 441-448. |
[31] | HAGOORT J. Ramey’s wellbore heat transmission revisited[J]. SPE Journal, 2004, 9(4): 465-474. |
[32] | LIVESCU S, DURLOFSKY L J, AZIZ K. Application of a new fully-coupled thermal multiphase wellbore flow model[C]// Paper SPE-113215-MS presented at the SPE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, April 2008. |
[33] | YOSHIOKA K, ZHU D, HILL A D, et al. A comprehensive model of temperature behavior in a horizontal well[C]// Paper SPE-95656-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 2005. |
[34] | GAO G H, JALALI Y. Prediction of temperature propagation along a horizontal well during injection period[J]. SPE Reservoir Evaluation & Engineering, 2008, 11(1): 131-140. |
[35] | DADA A O, MURADOV K M, DAVIES D R. Novel solutions and interpretation methods for transient, sandface temperature in vertical, dry gas producing wells[C]// Paper SPE-181057-MS presented at the SPE Intelligent Energy International Conference and Exhibition, Aberdeen, Scotland, UK, September 2016. |
[36] | MAO Y L, ZEIDOUNI M. Accounting for fluid-property variations in temperature-transient analysis[J]. SPE Journal, 2018, 23(3): 868-884. |
[37] | KAMPHUIS H, DAVIES D R, ROODHART L P. A new simulator for the calculation of the in situ temperature profile during well stimulation fracturing treatments[J]. Journal of Canadian Petroleum Technology, 1993, 32(5): 38-47. |
[38] | YOSHIOKA K. Detection of water or gas entry into horizontal wells by using permanent downhole monitoring systems[D]. Texas: Texas A&M University, 2007. |
[39] | YOSHIOKA K, ZHU D, HILL A D, et al. A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells[J]. SPE Production & Operations, 2009, 24(4): 510-521. |
[40] | LI Z Y, ZHU D. Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for water drive reservoir[J]. SPE Production & Operations, 2010, 25(3): 296-304. |
[41] | LI Z Y. Interpreting horizontal well flow profiles and optimizing well performance by downhole temperature and pressure data[D]. Texas: Texas A&M University, 2010. |
[42] | ZHANG S, ZHU D. Inversion of downhole temperature measurements in multistage fracture stimulation in horizontal wells[C]// Paper SPE-187322-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, October 2017. |
[43] | 罗红文, 李海涛, 蒋贝贝, 等. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法[J]. 天然气地球科学, 2019, 30(11): 1639-1645. |
LUO Hongwen, LI Haitao, JIANG Beibei, et al. A novel method to interpret production profiles of fractured horizontal well in low-permeability gas reservoir by inversing DTS data[J]. Natural Gas Geoscience, 2019, 30(11): 1639-1645. | |
[44] | SHERMAN C S, MORRIS J P, MELLORS R J, et al. Simulating fracture-induced strain signals measured by a distributed fiber-optic sensor[C]// Paper SEG-2017-17678887 presented at the 2017 SEG International Exposition and Annual Meeting, Houston, Texas, September 2017. |
[45] | SHERMAN C S, MELLORS R J, MORRIS J P, et al. Geomechanical modeling of distributed fiber-optic sensor measurements[J]. Interpretation, 2019, 7(1): SA21-SA27. |
[46] | SHERMAN C S, MELLORS R J, MORRIS J P, et al. Modeling distributed fiber optic sensor signals using computational rock mechanics[C]// Paper URTEC-2900760-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2018. |
[47] | LIU Y Z, WU K, JIN G, et al. Hydraulic fracture modeling of fracture-induced strain variation measured by low-frequency distributed acoustic sensing(LF-DAS) along offset wells[C]// Paper ARMA-2020-1426 presented at the 54th U.S. Rock Mechanics/Geomechanics Symposium, physical event cancelled, June 2020. |
[48] | GURJAO K G R, GILDIN E, GIBSON R, et al. Modeling of distributed strain sensing(DSS) and distributed acoustic sensing(DAS) incorporating hydraulic and natural fractures interaction[C]// Paper URTEC-2021-5414-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Houston, Texas, USA, July 2021. |
[49] |
陈铭, 郭天魁, 胥云, 等. 水平井压裂多裂缝扩展诱发光纤应变演化机理[J]. 石油勘探与开发, 2022, 49(1): 183-193.
doi: 10.11698/PED.2022.01.17 |
CHEN Ming, GUO Tiankui, XU Yun, et al. Evolution mechanism of optical fiber strain induced by multi-fracture growth during fracturing in horizontal wells[J]. Petroleum Exploration and Development, 2022, 49(1): 183-193.
doi: 10.11698/PED.2022.01.17 |
|
[50] | SIERRA J, KAURA J, UALTIERI D, et al. DTS monitoring of hydraulic fracturing: Experiences and lessons learned[C]// Paper SPE-116182-MS presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008. |
[51] | LI X Y, ZHU D. Temperature behavior of multi-stage fracture treatments in horizontal wells[C]// Paper SPE-181876-MS presented at the SPE Asia Pacific Hydraulic Fracturing Conference, Beijing, China, August 2016. |
[52] | HOLLEY E H, MOLENAAR M M, FIDAN E, et al. Interpreting uncemented multistage hydraulic-fracturing completion effectiveness using fiber-optic DTS injection data[C]// Paper SPE-153131-MS presented at the SPE Middle East Unconventional Gas Conference and Exhibition, Abu Dhabi, UAE, January 2012. |
[53] | 苏良银, 常笃, 杨海恩, 等. 低渗透油藏侧钻水平井小井眼分段多簇压裂技术[J]. 石油钻探技术, 2020, 48(6): 94-98. |
SU Liangyin, CHANG Du, YANG Hai’en, et al. Segmented multi-cluster fracturing technology for sidetrack horizontal well with slim holes in low permeability reservoir well with slim holes in low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 94-98. | |
[54] | 谢南星, 蔡道钢, 叶长青, 等. 页岩气水平井生产压降计算新模型[J]. 钻采工艺, 2022, 45(1): 75-80. |
XIE Nanxing, CAI Daogang, YE Changqing, et al. New production pressure drop calculation model for shale gas horizontal well[J]. Drilling & Production Technology, 2022, 45(1): 75-80. | |
[55] | 肖剑锋, 胡棚杰, 韩烈祥, 等. 川南威远地区筇竹寺组页岩力学性质及可压性评价[J]. 钻采工艺, 2022, 45(2): 61-66. |
XIAO Jianfeng, HU Pengjie, HAN Liexiang, et al. Mechanical properties and compressibility evaluation of Qiongzhusi Shale in Weiyuan Area in Southern Sichuan[J]. Drilling & Production Technology, 2022, 45(2): 61-66. | |
[56] | 姚红生, 王伟, 何希鹏, 等. 南川复杂构造带常压页岩气地质工程一体化开发实践[J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
YAO Hongsheng, WANG Wei, HE Xipeng, et al. Development practices of geology-engineering integration in complex structural area of Nanchuan normal pressure shale gas field[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 537-547. | |
[57] | NATH D K, FINLEY D B, KAURA J D, et al. Real-time fiber-optic distributed temperature sensing(DTS)new applications in the oil field[C]// Paper SPE-103069-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, September 2006. |
[58] | TARRAHI M, GILDIN E, MORENO J, et al. Dynamic integration of DTS data for hydraulically fractured reservoir characterization with the ensemble Kalman filter[C]// Paper SPE-169990-MS presented at the SPE Energy Resources Conference, Port of Spain, Trinidad and Tobago, June 2014. |
[59] | CUI J Y, ZHU D, JIN M Q. Diagnosis of multi-stage fracture stimulation in horizontal wells by downhole temperature measurements[C]// Paper SPE-170874-MS presented at the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, October 2014. |
[60] | CUI J Y, YANG C D, ZHU D, et al. Fracture diagnosis in multiple stage stimulated horizontal well by temperature measurements with fast marching method[J]. SPE Journal, 2016, 21(6): 2289-2300. |
[61] | 隋微波, 刘荣全, 崔凯. 水力压裂分布式光纤声波传感监测的应用与研究进展[J]. 中国科学:技术科学, 2021, 51(4): 371-387. |
SUI Weibo, LIU Rongquan, CUI Kai. Application and research progress of distributed optical fiber acoustic sensing monitoring for hydraulic fracturing[J]. SCIENTIA SINICA Technologica, 2021, 51(4): 371-387. | |
[62] | MOLENAAR M M, COX B E. Field cases of hydraulic fracture stimulation diagnostics using fiber optic distributed acoustic sensing(DAS) measurements and analyses[C]// Paper SPE-164030-MS presented at the SPE Unconventional Gas Conference and Exhibition, Muscat, Oman, January 2013. |
[63] | MOLENAAR M M, HILL D, WEBSTER P, et al. First downhole application of distributed acoustic sensing(DAS) for hydraulic fracturing monitoring and diagnostics[C]// Paper SPE-140561-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, January 2011. |
[64] | SOMANCHI K, BREWER J, REYNOLDS A. Extreme limited-entry design improves distribution efficiency in plug-and-perforate completions: Insights from fiber-optic diagnostics[J]. SPE Drilling & Completion, 2018, 33(4): 298-306. |
[65] | CERRAHOGLU C, NALDRETT G, VIGRASS A, et al. Cluster flow identification during multi-rate testing using a wireline tractor conveyed distributed fiber optic sensing system with engineered fiber on a HPHT horizontal unconventional gas producer in the Liard Basin[C]// Paper SPE-196120-MS presented at the SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada, September 2019. |
[66] | JIN G, ROY B. Hydraulic-fracture geometry characterization using low-frequency DAS signal[J]. The Leading Edge, 2017, 36(12): 975-980. |
[67] | UGUETO G A, TODEA F, DAREDIA T, et al. Can you feel the strain? DAS strain fronts for fracture geometry in the BC Montney, Groundbirch[C]// Paper SPE-195943-MS presented at the SPE Annual Technical Conference and Exhibition, Calgary, Alberta, Canada, September 2019. |
[68] | LI X Y, ZHANG J, GRUBERT M, et al. Distributed acoustic and temperature sensing applications for hydraulic fracture diagnostics[C]// Paper SPE-199759-MS presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA. |
[69] | DANARDATU H, GREGERSEN S, ALTERN E, et al. Data acquisition and processing of carbon rod conveyed DTS and DAS in very long horizontal wells: First trial in North Sea Danish Sector[C]// Paper SPE-170663-MS presented at the SPE Annual Technical Conference and Exhibition, Amsterdam, The Netherlands, October 2014. |
[70] | WHEATON B, HAUSTVEIT K, DEEG W, et al. A case study of completion effectiveness in the eagle ford shale using DAS/DTS observations and hydraulic fracture modeling[C]// Paper SPE-179149-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2016. |
[71] | UGUETO C G A, HUCKABEE P T, MOLENAAR M M, et al. Perforation cluster efficiency of cemented plug and perf limited entry completions; Insights from fiber optics diagnostics[C]// Paper SPE-179124-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2016. |
[1] | 赵坤,李泽阳,刘娟丽,胡可,江冉冉,王伟祥,刘秀珍. 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践 [J]. 油气藏评价与开发, 2024, 14(1): 83-90. |
[2] | 崔传智, 李怀亮, 吴忠维, 张传宝, 李弘博, 张营华, 郑文宽. 考虑压驱注水诱发裂缝影响的注水井压力分析 [J]. 油气藏评价与开发, 2023, 13(5): 686-694. |
[3] | 李小刚, 何建冈, 杨兆中, 易良平, 黄刘科, 杜博迪, 张景强. 基于离散元法的压裂裂缝特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 348-357. |
[4] | 候梦如,梁冰,孙维吉,刘奇,赵航. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究 [J]. 油气藏评价与开发, 2023, 13(1): 100-107. |
[5] | 叶燊,乔江美,李同春. 注水压力和溶洞内压对水力裂缝扩展影响模拟研究 [J]. 油气藏评价与开发, 2022, 12(2): 382-390. |
[6] | 张伯虎,周昌满,郑永香,刘建军. 正交节理与应力比值系数对水力裂缝扩展影响规律研究 [J]. 油气藏评价与开发, 2020, 10(5): 55-62. |
|