[1] |
许马光, 范彩伟, 张丹妮, 等. 莺歌海盆地乐东01超高温高压气藏形成条件及成藏模式[J]. 天然气工业, 2021, 41(11): 43-53.
|
|
XU Maguang, FAN Caiwei, ZHANG Danni, et al. Formation condition and hydrocarbon accumulation model in Ledong 01 Gas Reservoir of super high temperature and high pressure in the Yinggehai Basin[J]. Natural Gas Industry, 2021, 41(11): 43-53.
|
[2] |
周伟, 王勇标, 王玉, 等. 莺歌海盆地东方区高温高压气藏气水分布特征及成因[J]. 天然气技术与经济, 2020, 14(5): 20-27.
|
|
ZHOU Wei, WANG Yongbiao, WANG Yu, et al. Characteristics and geneses of gas-water distribution in high-temperature high-pressure gas reservoirs, Dongfang block, Yinggehai Basin[J]. Natural Gas Technology and Economy, 2020, 14(5): 20-27.
|
[3] |
吴建彪. 东胜气田致密砂岩储层渗流机理[J]. 科学技术与工程, 2022, 22(27): 11887-11894.
|
|
WU Jianbiao. Seepage mechanism of tight sandstone reservoir in Dongsheng gas field[J]. Science Technology and Engineering, 2022, 22(27): 11887-11894.
|
[4] |
鲁瑞彬, 王雯娟, 胡琳, 等. 高温高压气藏衰竭开发气水相渗变化规律探讨[J]. 中国海上油气, 2020, 32(2): 88-95.
|
|
LU Ruibin, WANG Wenjuan, HU Lin, et al. Discussion on the change laws of gas-water relative permeability in the depletion development of HTHP gas reservoirs[J]. China Offshore Oil and Gas, 2020, 32(2): 88-95.
|
[5] |
雷霄, 王雯娟, 鲁瑞彬, 等. 莺琼盆地高温高压砂岩气藏储层应力敏感性实验[J]. 科学技术与工程, 2020, 20(26): 10745-10750.
|
|
LEI Xiao, WANG Wenjuan, LU Ruibin, et al. Experimental study on stress sensitivity of high temperature and high pressure sandstone gas reservoirs in yingqiong basin[J]. Science Technology and Engineering, 2020, 20(26): 10745-10750.
|
[6] |
王雯娟, 鲁瑞彬, 雷霄, 等. 高温高压低渗气藏可动水饱和度及水气比定量评价方法[J]. 中国海上油气, 2022, 34(3): 91-97.
|
|
WANG Wenjuan, LU Ruibin, LEI Xiao, et al. Quantitative evaluation method of movable water saturation (MWS) and water gas ratio (WGR) in high temperature high pressure (HTHP) and low permeability gas reservoirs[J]. China Offshore Oil and Gas, 2022, 34(3): 91-97.
|
[7] |
张杰, 李熙喆, 高树生, 等. 致密砂岩气藏产水机理及其对渗流能力的影响[J]. 天然气地球科学, 2019, 30(10): 1519-1530.
|
|
ZHANG Jie, LI Xizhe, GAO Shusheng, et al. Water production mechanism of tight sandstone gas reservoir and its influence on percolation capacity[J]. Natural Gas Geoscience, 2019, 30(10): 1519-1530.
|
[8] |
HUANG X, GUO X, ZHOU X, et al. Effects of water invasion law on gas wells in high temperature and high pressure gas reservoir with a large accumulation of water-soluble gas[J]. Journal of Natural Gas Science and Engineering, 2019, 62: 68-78.
|
[9] |
魏聪, 张承泽, 陈东, 等. 塔里木盆地克深2气藏断层、裂缝、基质“三重介质”渗流及开发机理[J]. 天然气地球科学, 2019, 30(12): 1684-1693.
|
|
WEI Cong, ZHANG Chengze, CHEN Dong, et al. Seepage characteristics and development mechanism characterized by faults-fracture-pores “triple medium” in Keshen 2 gas reservoirs, Tarim Basin[J]. Natural Gas Geoscience, 2019, 30(12): 1684-1693.
|
[10] |
汪周华, 肖阳, 郭平, 等. 缝洞型碳酸盐岩气藏高温高压气水两相渗流特征[J]. 油气藏评价与开发, 2017, 7(2): 47-52.
|
|
WANG Zhouhua, XIAO Yang, GUO Ping, et al. Gas-water flowing characteristics under high temperature and high pressure in fractured-cavity carbonate gas reservoir[J]. Reservoir Evaluation and Development, 2017, 7(2): 47-52.
|
[11] |
杨玉斌, 肖文联, 韩建, 等. 丹凤场气田致密砂岩气水渗流特征及影响因素[J]. 油气藏评价与开发, 2022, 12(2): 356-364.
|
|
YANG Yubin, XIAO Wenlian, HAN Jian, et al. Gas-water flow characteristics and influencing factors of tight sandstone in Danfengchang Gas Field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2): 356-364.
|
[12] |
李承龙, 李敏, 何鑫迪. 基于压敏效应的变启动压力梯度渗流模型[J]. 大庆石油地质与开发, 2021, 40(1): 81-89.
|
|
LI Chenglong, LI Min, HE Xindi. Seepage model of the variable starting pressure gradient based on the pressure sensitive effect[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(1): 81-89.
|
[13] |
严文德, 孙雷, 程绪彬, 等. 低渗透气藏特殊渗流机理的产能评价分析[J]. 天然气工业, 2007, 27(11): 76-78.
|
|
YAN Wende, SUN Lei, CHENG Xubin, et al. Appraisal and analysis of deliverability by special flow mechanism in low-permeability gas reservoir[J]. Natural Gas Industry, 2007, 27(11): 76-78.
|
[14] |
郭智栋, 康毅力, 王玉斌, 等. 低压高含水致密气藏气-水相渗特征及生产动态响应[J]. 油气藏评价与开发, 2024, 14(1): 138-150.
|
|
GUO Zhidong, KANG Yili, WANG Yubin, et al. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150.
|
[15] |
赵玉龙, 刘香禺, 张烈辉, 等. 致密砂岩气藏气水流动规律及储层干化作用机理[J]. 天然气工业, 2020, 40(9): 70-79.
|
|
ZHAO Yulong, LIU Xiangyu, ZHANG Liehui, et al. Laws of gas and water flow and mechanism of reservoir drying in tight sandstone gas reservoirs[J]. Natural Gas Industry, 2020, 40(9): 70-79.
|
[16] |
雷霄, 王雯娟, 罗吉会, 等. 莺歌海盆地深层高含CO2高含水气藏气相渗流机理[J]. 特种油气藏, 2021, 28(5): 146-153.
|
|
LEI Xiao, WANG Wenjuan, LUO Jihui, et al. Gas seepage mechanism of deep gas reservoirs with high CO2 and water content in yinggehai basin[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 146-153.
|
[17] |
王雯娟, 雷霄, 鲁瑞彬, 等. 南海西部异常高温高压气藏区域产能预测技术[J]. 地球科学, 2019, 44(8): 2636-2642.
|
|
WANG Wenjuan, LEI Xiao, LU Ruibin, et al. Regional productivity prediction technology for abnormal high temperature and high pressure gas reservoirs in western South China Sea[J]. Earth Science, 2019, 44(8): 2636-2642.
|
[18] |
李黎, 胡文丽, 罗启源, 等. 非达西渗流效应对南海低渗透储层产能的影响[J]. 大庆石油地质与开发, 2021, 40(2): 160-167.
|
|
LI Li, HU Wenli, LUO Qiyuan, et al. Impact of non-Darcy flow on the productivity of low permeability reservoirs in South China Sea[J]. Petroleum Geology & Oilfield Development in Daqing, 2021, 40(2): 160-167.
|
[19] |
谭先红, 梁斌, 王帅, 等. 一种低渗储层凝析气藏气井产能评价方法研究[J]. 油气藏评价与开发, 2021, 11(5): 724-729.
|
|
TAN Xianhong, LIANG Bin, WANG Shuai, et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 724-729.
|
[20] |
郭肖, 赵显阳, 杨泓波. 异常高压低渗透气藏产能评价新方法[J]. 油气藏评价与开发, 2018, 8(6): 13-18.
|
|
GUO Xiao, ZHAO Xianyang, YANG Hongbo. A new method for evaluating the productivity of abnormally high-pressure and low permeability gas reservoirs[J]. Reservoir Evaluation and Development, 2018, 8(6): 13-18.
|
[21] |
冯明刚, 严丽, 王雪玲, 等. 元坝气田长兴组气藏有效储层物性下限标准研究[J]. 石油实验地质, 2012, 34(5): 535-538.
|
|
FENG Minggang, YAN Li, WANG Xueling, et al. Lower limit for physical property of effective reservoir in Changxing Formation, Yuanba Gas Field[J]. Petroleum Geology & Experiment, 2012, 34(5): 535-538.
|