油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (5): 844-857.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.014
樊云鹏1,2(), 文志刚1,2, 李桢3, 何右安3, 田伟超1,2(
), 刘雨航1,2
收稿日期:
2025-02-08
发布日期:
2025-09-19
出版日期:
2025-10-26
通讯作者:
田伟超(1990—),男,博士,副教授,主要从事油气地球化学与石油地质学方向的研究。地址:湖北省武汉市蔡甸区大学路111号,邮政编码:430100。E-mail:648493030@qq.com作者简介:
樊云鹏(1995—),男,在读博士研究生,主要从事非常规油气地质方向的研究。地址:湖北省武汉市蔡甸区大学路111号,邮政编码:430100。E-mail:201404152@yangtzeu.edu.cn
基金资助:
FAN Yunpeng1,2(), WEN Zhigang1,2, LI Zhen3, HE You’an3, TIAN Weichao1,2(
), LIU Yuhang1,2
Received:
2025-02-08
Online:
2025-09-19
Published:
2025-10-26
摘要:
鄂尔多斯盆地延长组7段(长7段)页岩油是中国典型的夹层型页岩油,现已建成陇东国家级页岩油开发示范基地。自发渗吸排驱油(简称自吸排油)现象贯穿于页岩油储层压裂到原油采出的全过程,对页岩油的产量具有显著影响。明确不同尺寸孔隙中的压裂液自吸排油特征及其控制因素,对于提升长7段页岩油的采收率至关重要。以鄂尔多斯盆地长7段夹层型页岩油储层为研究对象,通过开展孔渗实验、X射线衍射分析、润湿角测定和核磁共振压裂液自吸排油等实验,明确不同类型储层在各尺寸孔隙中的压裂液自吸排油特征,并从物性、矿物组成、润湿性等角度揭示不同类型孔隙自吸排油主控因素。结果表明:①根据核磁共振分形得到的不同类型孔隙占比,可将样品分为Ⅰ类、Ⅱ类储层,Ⅰ类储层大孔占比平均为85.1%,Ⅱ类储层中孔平均占比为79.0%。②Ⅰ类储层的储层品质因子、石英含量高于Ⅱ类储层,黏土矿物含量低于Ⅱ类储层,润湿角范围为77.3°~103.7°,亲水-亲油储层均有发育,Ⅱ类储层样品的润湿角为53.2°~63.1°,均为亲水储层。③Ⅰ类储层平均自吸排油比为17.27%,主要是大孔的贡献,平均为74.1%,中孔贡献的比例为25.5%,Ⅱ类储层平均自吸排油比为40.74%,主要是中孔的贡献,平均为85.2%。综合分析各影响因素,最终认为矿物组成是自吸排油比最根本的影响因素,其次是孔隙类型、润湿性及岩石物性等参数。
中图分类号:
FAN Yunpeng,WEN Zhigang,LI Zhen, et al. Spontaneous imbibition and oil displacement characteristics in interlayered shale oil reservoirs and their key controlling factors[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 844-857.
表1
鄂尔多斯盆地长7段页岩油储层基本信息"
样品编号 | 深度/m | 长度/cm | 直径/m | 孔隙度/% | 渗透率/10-3 μm² | 储层品质因子/10-3 μm | 润湿角/(°) | 排油比/% |
---|---|---|---|---|---|---|---|---|
W1 | 1 998.15 | 2.49 | 2.544 | 8.71 | 0.062 | 0.84 | 99.0 | 12.16 |
W2 | 2 009.18 | 2.80 | 2.546 | 6.41 | 0.099 | 1.23 | 103.7 | 22.82 |
W3 | 2 030.63 | 3.61 | 2.488 | 10.82 | 0.097 | 0.95 | 82.8 | 11.12 |
W4 | 1 727.60 | 2.92 | 2.544 | 8.59 | 0.047 | 0.74 | 73.3 | 22.96 |
W5 | 1 526.92 | 5.68 | 2.518 | 7.02 | 0.269 | 1.96 | 62.1 | 50.72 |
W6 | 2 031.76 | 5.21 | 2.518 | 9.73 | 0.445 | 2.14 | 53.4 | 30.75 |
[1] |
杜金虎, 胡素云, 庞正炼, 等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探, 2019, 24(5): 560-568.
doi: 10.3969/j.issn.1672-7703.2019.05.003 |
DU Jinhui, HU Suyun, PANG Zhenglian, et al. Types, Potential and Prospects of Continental Shale Oil in China[J]. China Petroleum Exploration 2019, 24 (5): 560-568.
doi: 10.3969/j.issn.1672-7703.2019.05.003 |
|
[2] |
金之钧, 朱如凯, 梁新平, 等. 当前陆相页岩油勘探开发值得关注的几个问题[J]. 石油勘探与开发, 2021, 48(6): 1276-1287.
doi: 10.11698/PED.2021.06.20 |
JIN Zhijun, ZHU Rukai, LIANG Xinping, et al. Several issues worthy of attention in current lacustrine shale oil exploration and development[J]. Petroleum Exploration and Development, 2021, 48(6): 1276-1287. | |
[3] |
郭旭光, 何文军, 杨森, 等. 准噶尔盆地页岩油“甜点区”评价与关键技术应用: 以吉木萨尔凹陷二叠系芦草沟组为例[J]. 天然气地球科学, 2019, 30(8): 1168-1179.
doi: 10.11764/j.issn.1672-1926.2019.05.020 |
GUO Xuguang, HE Wenjun, YANG Sen, et al. Evaluation and application of key technologies of “sweet area” of shale oil in Junggar Basin: Case study of Permian Lucaogou Formation in Jimusar Depression[J]. Natural Gas Geoscience, 2019, 30(8): 1168-1179.
doi: 10.11764/j.issn.1672-1926.2019.05.020 |
|
[4] |
柳波, 孙嘉慧, 张永清, 等. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式[J]. 石油勘探与开发, 2021, 48(3): 521-535.
doi: 10.11698/PED.2021.03.08 |
LIU Bo, SUN Jiahui, ZHANG Yongqing, et al. Reservoir space and enrichment model of shale oil in the first member of Cretaceous Qingshankou Formation in the Changling Sag, southern Songliao Basin, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 521-535. | |
[5] |
支东明, 唐勇, 何文军, 等. 准噶尔盆地玛湖凹陷风城组常规-非常规油气有序共生与全油气系统成藏模式[J]. 石油勘探与开发, 2021, 48(1): 38-51.
doi: 10.11698/PED.2021.01.04 |
ZHI Dongming, TANG Yong, HE Wenjun, et al. Orderly coexistence and accumulation models of conventional and unconventional hydrocarbons in Lower Permian Fengcheng Formation, Mahu Sag, Junggar Basin[J]. Petroleum Exploration and Development, 2021, 48(1): 38-51. | |
[6] |
滕建彬, 邱隆伟, 张守鹏, 等. 济阳坳陷古近系沙河街组湖相富有机质页岩白云石成因及成岩演化[J]. 石油勘探与开发, 2022, 49(6): 1080-1093.
doi: 10.11698/PED.20220170 |
TENG Jianbin, QIU Longwei, ZHANG Shoupeng, et al. Origin and diagenetic evolution of Dolomites in Paleogene Shahejie Formation lacustrine organic shale of Jiyang Depression, Bohai Bay Basin, East China[J]. Petroleum Exploration and Development, 2022, 49(6): 1080-1093. | |
[7] |
赵贤正, 周立宏, 蒲秀刚, 等. 湖相页岩型页岩油勘探开发理论技术与实践: 以渤海湾盆地沧东凹陷古近系孔店组为例[J]. 石油勘探与开发, 2022, 49(3): 616-626.
doi: 10.11698/PED.20220065 |
ZHAO Xianzheng, ZHOU Lihong, PU Xiugang, et al. Theories, technologies and practices of lacustrine shale oil exploration and development: A case study of Paleogene Kongdian Formation in Cangdong sag, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2022, 49(3): 616-626. | |
[8] | 付锁堂, 姚泾利, 李士祥, 等. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力[J]. 石油实验地质, 2020, 42(5): 698-710. |
FU Suotang, YAO Jingli, LI Shixiang, et al. Enrichment characteristics and resource potential of continental shale oil in Mesozoic Yanchang Formation, Ordos Basin[J]. Petroleum Geology & Experiment, 2020, 42(5): 698-710. | |
[9] |
赵文智, 卞从胜, 李永新, 等. 陆相中高成熟页岩油“组分流动”条件及其在提高页岩油产量中的作用[J]. 石油勘探与开发, 2024, 51(4): 720-730.
doi: 10.11698/PED.20240256 |
ZHAO Wenzhi, BIAN Congsheng, LI Yongxin, et al. “Component flow” conditions and its effects on enhancing production of continental medium-to-high maturity shale oil[J]. Petroleum Exploration and Development, 2024, 51(4): 720-730. | |
[10] |
刘显阳, 李士祥, 周新平, 等. 鄂尔多斯盆地石油勘探新领域、新类型及资源潜力[J]. 石油学报, 2023, 44(12): 2070-2090.
doi: 10.7623/syxb202312005 |
LIU Xianyang, LI Shixiang, ZHOU, Xinping, et al. New fields, new types, and resource potential of petroleum exploration in the Ordos Basin[J]. Acta Petrolei Sinica, 2023, 44(12): 2070-2090.
doi: 10.7623/syxb202312005 |
|
[11] |
付金华, 李士祥, 牛小兵, 等. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践[J]. 石油勘探与开发, 2020, 47(5): 870-883.
doi: 10.11698/PED.2020.05.03 |
FU Jinhua, LI Shixiang, NIU Xiaobing, et al. Geological Characteristics and Exploration Practices of Shale Oil in the Chang 7 Member of the Triassic in the Ordos Basin[J]. Petroleum Exploration and Development 2020, 47 (5): 870-883. | |
[12] |
赵文智, 胡素云, 侯连华, 等. 中国陆相页岩油类型、资源潜力及与致密油的边界[J]. 石油勘探与开发, 2020, 47(1): 1-10.
doi: 10.11698/PED.2020.01.01 |
ZHAO Wenzhi, HU Suyun, HOU Lianhua, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil[J]. Petroleum Exploration and Development, 2020, 47(1): 1-10.
doi: 10.1016/S1876-3804(20)60001-5 |
|
[13] |
吴志宇, 高占武, 麻书玮, 等. 鄂尔多斯盆地长7段页岩油渗吸驱油现象初探[J]. 天然气地球科学, 2021, 32(12): 1874-1879.
doi: 10.11764/j.issn.1672-1926.2021.10.015 |
WU Zhiyu, GAO Zhanwu, MA Shuwei, et al. Preliminary study on imbibition and oil displacement of Chang 7 shale oil in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1874-1879.
doi: 10.11764/j.issn.1672-1926.2021.10.015 |
|
[14] | 杨兆中, 袁健峰, 张景强, 等. 四川盆地海相页岩水平井压裂裂缝研究进展及认识[J]. 油气藏评价与开发, 2024, 14(4): 600-609. |
YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, et al. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. | |
[15] | 胡之牮, 李树新, 王建君, 等. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价[J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
HU Zhijian, LI Shuxin, WANG Jianjun, et al. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. | |
[16] | DONG X, SHEN L W, LIU X, et al. NMR characterization of a tight sand’s pore structures and fluid mobility: An experimental investigation for CO2 EOR potential[J]. Marine and Petroleum Geology, 2020, 118: 104460. |
[17] | TIAN W, LU S, WEN Z, et al. Quantifying the microdistribution of different fluid types in the multiscale pore throat structure of low-permeability conglomerates[J]. Energy & Fuels, 2023, 37(13): 9066-9079. |
[18] | XU T, PU J, QIN X, et al. Experimental analysis of matrix moveable oil saturation in tight sandstone reservoirs of the south Ordos Basin, China[J]. Energy Geoscience, 2024, 5(1): 100097. |
[19] | 陈秀林, 王秀宇, 许昌民, 等. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究[J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
CHEN Xiulin, WANG Xiuyu, XU Changmin, et al. CO2 sequestration morphology and distribution characteristics based on NMR technology and microscopic numerical simulation[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 296-304. | |
[20] | 王鑫, 曾溅辉, 孔祥晔, 等. 页岩孔隙润湿性对自发渗吸的控制作用[J]. 中南大学学报(自然科学版), 2022, 53(9): 3323-3336. |
WANG Xin, ZENG Jianhui, KONG Xiangye, et al. Controlling effect of shale pore wettability on spontaneous imbibition[J]. Journal of Central South University (Science and Technology), 2022, 53(9): 3323-3336. | |
[21] | YANG P, GUO H, YANG D. Determination of residual oil distribution during waterflooding in tight oil formations with NMR relaxometry measurements[J]. Energy & Fuels, 2013, 27(10): 5750-5756. |
[22] |
谷潇雨, 蒲春生, 黄海, 等. 渗透率对致密砂岩储集层渗吸采油的微观影响机制[J]. 石油勘探与开发, 2017, 44(6): 948-954.
doi: 10.11698/PED.2017.06.12 |
GU Xiaoyu, PU Chunsheng, HUANG Hai, et al. Micro-influencing mechanism of permeability on spontaneous imbibition recovery for tight sandstone reservoirs[J]. Petroleum Exploration and Development, 2017, 44(6): 1003-1009. | |
[23] | YANG L, GE H, SHI X, et al. The effect of microstructure and rock mineralogy on water imbibition characteristics in tight reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1461-1471. |
[24] | WANG X, PENG X, ZHANG S, et al. Characteristics of oil distributions in forced and spontaneous imbibition of tight oil reservoir[J]. Fuel, 2018, 224: 280-288. |
[25] | 唐慧莹, 第凯翔, 张烈辉, 等. 基于核磁共振信号标定法的致密油藏渗吸实验研究[J]. 油气藏评价与开发, 2024, 14(3): 402-413. |
TANG Huiying, DI Kaixiang, ZHANG Liehui, et al. Tight oil imbibition based on nuclear magnetic resonance signal calibration method[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 402-413. | |
[26] | 李腾, 高辉, 王美强, 等. 基于核磁共振孔隙划分的致密油藏自发渗吸原油可动性研究[J]. 力学学报, 2023, 55(3): 643-655. |
LI Teng, GAO Hui, WANG Meiqiang, et al. Study on movability of spontaneous imbibition oil recovery from tight reservoirs based on nuclear magnetic resonance pore classification method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(3): 643-655. | |
[27] |
杨智, 邹才能. " 进源找油": 源岩油气内涵与前景[J]. 石油勘探与开发, 2019, 46(1): 173-184.
doi: 10.11698/PED.2019.01.18 |
YANG Zhi, ZOU Caineng. "Exploring petroleum inside source kitchen": Connotation and prospects of source rock oil and gas[J]. Petroleum Exploration and Development, 2019, 46(1): 173-184. | |
[28] | 李颖, 李茂茂, 李海涛, 等. 水相渗吸对页岩储层的物化作用机理研究[J]. 油气藏评价与开发, 2023, 13(1): 64-73. |
LI Ying, LI Maomao, LI Haitao, et al. Physicochemical mechanism of water phase imbibition in shale reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(1): 64-73. | |
[29] | 周小航, 陈冬霞, 夏宇轩, 等. 鄂尔多斯盆地陇东地区长7 段页岩油储层自发渗吸特征及影响因素[J]. 地球科学, 2022, 47(8): 3045-3055. |
ZHOU Xiaohang, CHEN Dongxia, XIA Yuxuanet al. Characteristics and Influencing Factors of Spontaneous Imbibition in Shale Oil Reservoirs of Chang 7 Section in Longdong Area, Ordos Basin[J]. Earth Science, 2022, 47(8): 3045-3055. | |
[30] | 李倩文. 渤海湾盆地东营凹陷古近系沙河街组页岩储层润湿性及其主控因素[J]. 石油与天然气地质, 2024, 45(4): 1142-1154. |
LI Qianwen. Wettability and its major determinants of shale reservoirs in the Shahejie Formation, Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2024, 45(4): 1142-1154. | |
[31] | TIAN W, LU S, ZHANG J, et al. NMR characterization of fluid mobility in low-permeability conglomerates: An experimental investigation of spontaneous imbibition and flooding[J]. Journal of Petroleum Science and Engineering, 2022, 214: 110483. |
[32] | 谢坤, 卢祥国, 陈欣, 等. 高温低渗油藏中表面活性剂溶液渗吸效果影响因素研究[J]. 西安石油大学学报(自然科学版), 2015, 30(5): 80-84, 10-11. |
XIE Kun, LU Xiangguo, CHEN Xin, et al. Study on influence factors of imbibition effect of surfactant in high temperature and low permeability reservoir[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2015, 30(5): 80-84, 10-11. | |
[33] | 刘绪钢, 李国锋, 李雷, 等. 页岩油储层压裂液渗吸驱油机理研究[J]. 油气藏评价与开发, 2024, 14(5): 756-763. |
LIU Xugang, LI Guofeng, LI Lei, et al. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. | |
[34] | GUO J, LI M, CHEN C, et al. Experimental investigation of spontaneous imbibition in tight sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107395. |
[35] | XIA Y, TIAN Z, XU S, et al. Effects of microstructural and petrophysical properties on spontaneous imbibition in tight sandstone reservoirs[J]. Journal of Natural Gas Science and Engineering, 2021, 96: 104225. |
[36] |
杨华, 牛小兵, 徐黎明, 等. 鄂尔多斯盆地三叠系长7段页岩油勘探潜力[J]. 石油勘探与开发, 2016, 43(4): 511-520.
doi: 10.11698/PED.2016.04.02 |
YANG Hua, NIU Xiaobing, XU Liming, et al. Exploration potential of shale oil in Chang 7 member, Upper Triassic Yanchang formation, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 511-520.
doi: 10.11698/PED.2016.04.02 |
|
[37] | 赵俊峰, 刘池洋, 张东东, 等. 鄂尔多斯盆地南缘铜川地区三叠系延长组长7段剖面及其油气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 233-245. |
ZHAO Junfeng, LIU Chiyang, ZHANG Dongdong, et al. Description and its hydrocarbon geological implications of outcrop sections of Triassic Chang-7 Member in southern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(1): 233-245. | |
[38] | ZHANG Q, LIU Y, WANG B, et al. Effects of pore-throat structures on the fluid mobility in Chang 7 tight sandstone reservoirs of Longdong Area, Ordos Basin[J]. Marine and Petroleum Geology, 2022, 135: 105407. |
[39] | AMAEFULE J O, ALTUNBAY M, TIAB D, et al. Enhanced reservoir description: Using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells[C]// SPE Annual Technical Conference and Exhibition. SPE, 1993: SPE-26436-MS. |
[40] | SHAO X, PANG X, LI H, et al. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China[J]. Energy & Fuels, 2017, 31(10): 10358-10368. |
[41] | MENG Z, SUN W, LIU Y, et al. Effect of pore networks on the properties of movable fluids in tight sandstones from the perspective of multi-techniques[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108449. |
[42] | LI Z, REN Y, CHANG R, et al. Clarifying the contribution of multiscale pores to physical properties of Chang 7 tight sandstones: Insight from full-scale pore structure and fractal characteristics[J]. Frontiers in Earth Science, 2024, 12: 1361052. |
[1] | 王健伟, 吕鹏, 王泽群, 严曙梅, 潘潞, 林立新, 王瑞, 徐晨, 刘舒, 黄小娟. 平湖组砂层组级别沉积演化及主控因素——以东海陆架盆地西湖凹陷W井区为例 [J]. 油气藏评价与开发, 2025, 15(5): 773-787. |
[2] | 齐怀彦, 杨国斌, 朱亚娣, 邓茗心, 耿少阳, 田伟超. 基于核磁共振与孔隙尺度模拟的致密油藏渗吸机理研究 [J]. 油气藏评价与开发, 2025, 15(5): 824-833. |
[3] | 陈军, 王海妹, 陈曦, 汤勇, 唐良睿, 斯容, 王慧珺, 黄显著, 冷冰. 页岩油藏CO2吞吐增油及埋存主控因素研究 [J]. 油气藏评价与开发, 2025, 15(4): 537-544. |
[4] | 李书瑜, 范立新, 夏连军, 张娟, 何俊卿, 张昊, 李越哲. 苏北盆地高邮凹陷深层戴南组一段三亚段油气富集特征 [J]. 油气藏评价与开发, 2025, 15(3): 455-462. |
[5] | 张瑾, 张凤奇, 邹彦荣, 任小庆, 陈红果, 王鹏涛, 茹荣, 张文. 地热水溶型和天然气伴生型氦气来源特征对比——以渭河盆地和鄂尔多斯盆地北部为例 [J]. 油气藏评价与开发, 2025, 15(3): 463-470. |
[6] | 王良军, 王勇, 章新文, 金芸芸, 朱颜, 张高源, 李晖, 李旺举. 鄂尔多斯盆地南部聚煤作用控气和煤层气勘探潜力——以旬宜探区石炭系太原组为例 [J]. 油气藏评价与开发, 2025, 15(2): 175-184. |
[7] | 马立涛, 吴鹏, 杨江浩, 胡维强, 黄英, 刘成, 牛艳伟, 王志壮, 任大忠. 鄂尔多斯盆地东部深部煤系储层微观孔隙结构特征及启示 [J]. 油气藏评价与开发, 2025, 15(2): 217-226. |
[8] | 林伟强, 丛彭, 王红, 魏子琛, 杨云天, 么志强, 曲丽丽, 马立民, 王方鲁. 深层煤层气水平井地质导向技术应用与探讨——以鄂尔多斯盆地神木气田X区块为例 [J]. 油气藏评价与开发, 2025, 15(2): 300-309. |
[9] | 柴妮娜, 李嘉瑞, 张力文, 王俊杰, 刘亚鹏, 朱伦. 夹层型陆相页岩油储层压裂裂缝扩展实验研究 [J]. 油气藏评价与开发, 2025, 15(1): 124-130. |
[10] | 周旭, 马超, 刘超, 唐嘉婧, 刘怡麟. 页岩油含油饱和度对渗吸采收率的影响规律研究 [J]. 油气藏评价与开发, 2025, 15(1): 73-78. |
[11] | 贾军红, 余光明, 李姝蔓, 谢珍, 彭荣, 汤勇. 低渗油藏注水井欠注问题主控因素分析——以鄂尔多斯盆地长8段油藏为例 [J]. 油气藏评价与开发, 2024, 14(6): 892-898. |
[12] | 何发岐, 李俊鹿, 高一龙, 吴锦伟, 白兴盈, 高盾. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力 [J]. 油气藏评价与开发, 2024, 14(5): 667-677. |
[13] | 张菲, 李秋政, 蒋阿明, 邓辞. 高邮凹陷花庄地区页岩油二维核磁测井评价应用 [J]. 油气藏评价与开发, 2024, 14(5): 707-713. |
[14] | 张益, 宁崇如, 陈亚舟, 姬玉龙, 赵立阳, 王爱方, 黄晶晶, 于凯怡. 致密油藏大排量注水吞吐技术及参数优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 727-733. |
[15] | 段宏亮, 谌廷姗, 孙敬, 洪亚飞, 李思辰, 卢显荣, 张正阳. 苏北盆地页岩油基质与裂缝流动能力实验研究 [J]. 油气藏评价与开发, 2024, 14(3): 333-342. |
|