[1] |
国家能源局. 天然气可采储量计算方法: [S]. 北京: 石油工业出版社, 2022.
|
|
National Energy Bureau of the People’s Republic of China. Natural gas recoverable reserves calculation method: [S]. Beijing: Petroleum Industry Press, 2022.
|
[2] |
尹涛, 杨屹铭, 靳锁宝, 等. 概率法在岩性气藏储量风险评估中的应用[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 60-68.
doi: 10.11885/j.issn.1674-5086.2019.09.16.04
|
|
YIN Tao, YANG Yiming, JIN Suobao, et al. Application of probability method in the reserves risk evaluation of lithologic gas reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 60-68.
|
[3] |
孙贺东, 王宏宇, 朱松柏, 等. 基于幂函数形式物质平衡方法的高压、超高压气藏储量评价[J]. 天然气工业, 2019, 39(3): 56-64.
|
|
SUN Hedong, WANG Hongyu, ZHU Songbai, et al. Reserve evaluation of high pressure and ultra high pressure reservoirs with power function material balance method[J]. Natural Gas Industry, 2019, 39(3): 56-64.
|
[4] |
付斌, 李进步, 张晨, 等. 强非均质致密砂岩气藏已开发区井网完善方法[J]. 天然气地球科学, 2020, 31(1): 143-149.
doi: 10.11764/j.issn.1672-1926.2019.09.005
|
|
FU Bin, LI Jinbu, ZHANG Chen, et al. Improvement of well pattern in development area of tight sandstone gas reservoir[J]. Natural Gas Geoscience, 2020, 31(1): 143-149.
doi: 10.11764/j.issn.1672-1926.2019.09.005
|
[5] |
郑玲丽, 朱冰倩, 张宇豪, 等. 缝洞型碳酸盐岩油藏水驱特征曲线类型及适应性: 以塔河油田为例[J]. 油气藏评价与开发, 2024, 14(6): 899-907.
|
|
ZHENG Lingli, ZHU Bingqian, ZHANG Yuhao, et al. Types and applicability of waterflooding characteristic curves in fractured-cavity carbonate reservoirs: A case study of Tahe Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 899-907.
|
[6] |
崔传智, 李怀亮, 吴忠维, 等. 考虑压驱注水诱发裂缝影响的注水井压力分析[J]. 油气藏评价与开发, 2023, 13(5): 686-694.
|
|
CUI Chuanzhi, LI Huailiang, WU Zhongwei, et al. Analysis of pressures in water injection wells considering fracture influence induced by pressure-drive water injection[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 686-694.
|
[7] |
梁运培, 张怀军, 王礼春, 等. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究[J]. 油气藏评价与开发, 2023, 13(6): 834-843.
|
|
LIANG Yunpei, ZHANG Huaijun, WANG Lichun, et al. Numerical simulation of flow fields and permeability evolution in real fractures under continuous loading stress[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(6): 834-843.
|
[8] |
陈祥, 王冠, 刘平礼, 等. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究[J]. 油气藏评价与开发, 2024, 14(4): 569-576.
|
|
CHEN Xiang, WANG Guan, LIU Pingli, et al. Experimental and simulation study on fracture conductivity of acid-fracturing in Dengying Formation of Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 569-576.
|
[9] |
SIDLE R E, LEE W J. An update on the use of reservoir analogs for the estimation of oil and gas reserves[C]// SPE Hydrocarbon Economics and Evaluation Symposium. SPE, 2010: 1-9.
|
[10] |
谭晓华, 彭港珍, 李晓平, 等. 考虑水封气影响的有水气藏物质平衡法及非均匀水侵模式划分[J]. 天然气工业, 2021, 41(3): 97-103.
|
|
TAN Xiaohua, PENG Gangzhen, LI Xiaoping, et al. Material balance method and classification of non-uniform water invasion mode for gas reservoirs with water considering the effect of water sealed gas[J]. Natural Gas Industry, 2021, 41(3): 97-103.
|
[11] |
吕志凯, 唐海发, 刘群明, 等. 塔里木盆地库车坳陷超深层裂缝性致密气藏水封气动态评价方法[J]. 天然气地球科学, 2022, 33(11): 1874-1882.
doi: 10.11764/j.issn.1672-1926.2022.07.007
|
|
Zhikai LYU, TANG Haifa, LIU Qunming, et al. Dynamic evaluation method of water sealed gas for ultra-deep fractured tight gas reservoir in Kuqa Depression, Tarim Basin[J]. Natural Gas Geoscience, 2022, 33(11): 1874-1882.
doi: 10.11764/j.issn.1672-1926.2022.07.007
|
[12] |
王国锋, 周梦飞, 胡勇, 等. 裂缝—孔隙型边底水气藏提高采收率大型物理模拟实验[J]. 天然气地球科学, 2024, 35(1): 96-103.
doi: 10.11764/j.issn.1672-1926.2023.07.009
|
|
WANG Guofeng, ZHOU Mengfei, HU Yong, et al. Large-scale physical simulation experiment for enhanced gas recovery in fractured-porous water-drive gas reservoirs[J]. Natural Gas Geoscience, 2024, 35(1): 96-103.
doi: 10.11764/j.issn.1672-1926.2023.07.009
|
[13] |
刘念肖, 雷登生, 黄小亮, 等. 考虑水封气的水驱气藏开发因素数值模拟研究[J]. 重庆科技学院学报(自然科学版), 2022, 24(2): 31-36.
|
|
LIU Nianxiao, LEI Dengsheng, HUANG Xiaoliang, et al. Numerical simulation research on development factors of water drive gas reservoir considering water-sealed gas[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2022, 24(2): 31-36.
|
[14] |
胡景涛, 王本成, 王勇飞, 等. 基于试井分析方法的元坝气田水侵早期识别[J]. 非常规油气, 2023, 10(3): 89-97.
|
|
HU Jingtao, WANG Bencheng, WANG Yongfei, et al. Early identification of water invasion in Yuanba Gas Field based on well test analysis method[J]. Unconventional Oil & Gas, 2023, 10(3): 89-97.
|
[15] |
李兴娟, 姜应兵, 丁立明. 塔河油田AD4单元流场变化及水侵规律认识[J]. 非常规油气, 2022, 9(5): 123-128.
|
|
LI Xingjuan, JIANG Yingbing, DING Liming. Understanding of flow distribution and water intrusion rule in AD4 well area of Tahe Olifield[J]. Unconventional Oil & Gas, 2022, 9(5): 123-128.
|
[16] |
侯亚伟, 刘超, 徐中波, 等. 多层水驱开发油田采收率快速预测方法[J]. 石油钻探技术, 2022, 50(5): 82-87.
|
|
HOU Yawei, LIU Chao, XU Zhongbo, et al. A method for rapidly predicting recovery of multi-layer oilfields developed by water-flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87.
|
[17] |
盖建. 基于自动机器学习的采油井压裂效果预测方法[J]. 油气地质与采收率, 2023, 30(1): 161-170.
|
|
GAI Jian. Prediction method for hydraulic fracturing effect of oil production well based on automatic machine learning technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 161-170.
|
[18] |
尚福华, 郑伟. 基于决策树的注采连通关系判别研究[J]. 计算机应用研究, 2013, 30(7): 2051-2054.
|
|
SHANG Fuhua, ZHENG Wei. Study on inferring interwell connectivity of injection-production system based on decision tree[J]. Application Research of Computers, 2013, 30(7): 2051-2054.
|
[19] |
张世昆, 陈作. 人工智能在压裂技术中的应用现状及前景展望[J]. 石油钻探技术, 2023, 51(1): 69-77.
|
|
ZHANG Shikun, CHEN Zuo. Status and prospect of artificial intelligence application in fracturing technology[J]. Petroleum Drilling Techniques, 2023, 51(1): 69-77.
|
[20] |
徐帅. 致密油藏注水吞吐数值模拟及开发制度优化[D]. 北京: 中国石油大学(北京), 2022.
|
|
XU Shuai. Numerical simulation and development system optimization of water injection huff and puff in tight oil reservoirs[D]. Beijing: China University of Petroleum (Beijing), 2022.
|
[21] |
窦凯文. 致密油水平井体积压裂参数优化研究[D]. 东营: 中国石油大学(华东), 2018
|
|
DOU Kaiwen. Optimization of volumetric-fracturing parameters for horizontal wells in tight oil reservoirs[D]. Dongying: China University of Petroleum (East China), 2018.
|
[22] |
LEE S H, LOUGH M F, JENSEN C L. Hierarchical modeling of flow in naturally fractured formations with multiple length scales[J]. Water Resources Research, 2001, 37(3): 443-455.
|
[23] |
LI L, LEE S H. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media[J]. SPE Reservoir Evaluation &Engineering, 2008, 11(4): 750-758.
|
[24] |
XU Y, CAVALCANTE FILHO J S, YU W, et al. Discrete-fracture modeling of complex hydraulic-fracture geometries in reservoir simulators[J]. SPE Reservoir Evaluation & Engineering, 2017, 20(2): 403-422.
|
[25] |
王平, 沈海超. 加拿大M致密砂岩气藏高效开发技术[J]. 石油钻探技术, 2022, 50(1): 97-102.
|
|
WANG Ping, SHEN Haichao. High-efficient development technologies for the M tight sandstone gas reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102.
|
[26] |
BREIMAN L, FRIEDMAN J, OLSHEN R A, et al. Classification and regression trees[M]. Belmont California: Wadsworth, 1984.
|