[1] |
ZHENG P, XIA Y, YAO T, et al. Formation mechanisms of hydraulic fracture network based on fracture interaction[J]. Energy, 2022, 243: 123057.
|
[2] |
FAN T, ZHANG G, CUI J. The impact of cleats on hydraulic fracture initiation and propagation in coal seams[J]. Petroleum Science, 2014, 11: 532-539.
|
[3] |
达引朋, 李建辉, 王飞, 等. 长庆油田特低渗透油藏中高含水井调堵压裂技术[J]. 石油钻探技术, 2022, 50(3): 74-79.
|
|
Yinpeng DA, LI Jianhui, WANG Fei, et al. Fracturing technologies with profile control and water shutoff for medium and high water-cut wells in ultra-low permeability reservoirs of Changqing oilfield[J]. Petroleum Drilling Techniques, 2022, 50(3): 74-79.
|
[4] |
李晓峰, 张矿生, 卜向前, 等. 老井重复压裂效果评价[J]. 石油地球物理勘探, 2018, 53(增刊2): 162-167.
|
|
LI Xiaofeng, ZHANG Kuangsheng, BU Xiangqian, et al. Evaluations of repeated fracturings in old wells[J]. Oil Geophysical Prospecting, 2018, 53(Suppl. 2): 162-167.
|
[5] |
王飞, 齐银, 达引朋, 等. 超低渗透油藏老井宽带体积压裂缝网参数优化[J]. 石油钻采工艺, 2019, 41(5): 643-648.
|
|
WANG Fei, QI Yin, Yinpeng DA, et al. Optimization of fracture network parameters of the wide zone SRV by old well in ultra low-permeability oil reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(5): 643-648.
|
[6] |
孔祥伟, 许洪星, 时贤, 等. 致密砂岩气藏暂堵压裂裂缝起裂扩展实验模拟[J]. 油气藏评价与开发, 2024, 14(3): 391-401.
|
|
KONG Xiangwei, XU Hongxing, SHI Xian, et al. Experimental simulation of fracture initiation and morphology in tight sandstone gas reservoirs temporary plugging fracturing[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 391-401.
|
[7] |
WARPINSKI N R R, MAYERHOFER M J J, AGARWAL K, et al. Hydraulic-fracture geomechanics and microseismic-source mechanisms[J]. SPE Journal, 2013, 18(4): 766-780.
|
[8] |
MAXWELL S. Microseismic imaging of hydraulic fracturing: Improved engineering of unconventional shale reservoirs[M]. Tulsa, OK : Society of Exploration Geophysicists, 2014.
|
[9] |
YANG R Z, ZHAO Z G, PENG W J, et al. Integrated application of 3D seismic and microseismic data in the development of tight gas reservoirs[J]. Applied Geophysics, 2013, 10(2): 157-169.
|
[10] |
赵争光, 秦月霜, 杨瑞召. 地面微地震监测致密砂岩储层水力裂缝[J]. 地球物理学进展, 2014, 29(5): 2136-2139.
|
|
ZHAO Zhengguang, QIN Yueshuang, YANG Ruizhao. Hydraulic fracture mapping for a tight sands reservoir by surface based microseismic monitoring[J]. Progress in Geophysics, 2014, 29(5): 2136-2139
|
[11] |
刘星, 金衍, 林伯韬, 等. 利用微地震事件重构三维缝网[J]. 石油地球物理勘探, 2019, 54(1): 102-111.
|
|
LIU Xing, JIN Yan, LIN Botao, et al. A 3D fracture network reconstruction method based on microseismic events[J]. Oil Geophysical Prospecting, 2019, 54(1): 102-111.
|
[12] |
容娇君, 李彦鹏, 徐刚, 等. 微地震裂缝检测技术应用实例[J]. 石油地球物理勘探, 2015, 50(5): 919-924.
|
|
RONG Jiaojun, LI Yanpeng, XU Gang, et al. Fracture detection with microseismic[J]. Oil Geophysical Prospecting, 2015, 50(5): 919-924.
|
[13] |
CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture treatment design[C]// Paper SPE-115769-MS presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008.
|
[14] |
CAREY M A, MONDAL S, SHARMA M M, et al. Correlating water hammer signatures with production log and microseismic data in fractured horizontal wells[C]// Paper SPE-179108-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2016.
|
[15] |
HUGOT A, DULAC J C, GRINGARTEN E, et al. Connecting the dots: Microseismic-derived connectivity for estimating reservoir volumes in low-permeability reservoirs[C]// Paper URTEC-2153402-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, Texas, USA, July 2015.
|
[16] |
OLSON J E. Multi-fracture propagation modeling: Applications to hydraulic fracturing in shales and tight gas sands[C]// Paper ARMA 08-327 presented at the 42nd U.S. Rock Mechanics-2nd U. S- Canada Rock Mechanics Symposium, San Francisco, California, USA, June 2008.
|
[17] |
GUO Z, ZHAO J, SUN X, et al. A novel continuous fracture network model: Formation mechanism, numerical simulation, and field application[J]. Geofluids, 2022, 2022(1): 4026200.
|
[18] |
李秋辰, 陈冬, 许文豪, 等. 基于微地震连续裂缝网络模型的SRV研究[J]. 物探与化探, 2023, 47(4): 1048-1055.
|
|
LI Qiuchen, CHEN Dong, XU Wenhao, et al. Determining stimulated reservoir volume based on the microseismic continuous fracture network model[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1048-1055.
|
[19] |
余金柱, 王嘉鑫, 李建辉, 等. 基于微震事件时空分布特征的连续裂缝网络建模方法研究: 以致密砂岩储层重复压裂效果评价为例[J]. 地球物理学进展, 2024, 39(6): 2275-2285.
doi: 10.6038/pg2024HH0465
|
|
YU Jinzhu, WANG Jiaxin, LI Jianhui, et al. Continuous fracture network modeling based on microseismic event spatial-temporal characteristics: A case study of refrac evaluation of tight oil reservoir[J]. Progress in Geophysics, 2024, 39(6): 2275-2285.
doi: 10.6038/pg2024HH0465
|
[20] |
李俊超, 戴城, 方思冬. 基于微地震约束的多尺度复杂压裂缝网自动反演新方法[J]. 天然气工业, 2023, 43(12): 46-54.
|
|
LI Junchao, DAI Cheng, FANG Sidong. An automatic inversion method for parameter determination of multi-scale complex hydraulic fracture network based on microseismic constraint[J]. Natural Gas Industry, 2023, 43(12): 46-54.
|
[21] |
宫傲寒. 水平井重复压裂新裂缝产生影响因素研究[D]. 北京: 中国石油大学(北京), 2017.
|
|
GONG Aohan. Study on influencing factors of new fractures in refracturing of horizontal wells[D]. Beijing: China University of Petroleum (Beijing), 2017.
|
[23] |
SHAH M, SHAH S, SIRCAR A. A comprehensive overview on recent developments in refracturing technique for shale gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 350-364.
|
|
WRIGHT C A, CONANT R A. Hydraulic fracture reorientation in primary and secondary recovery from low-permeability reservoirs[C]// Paper SPE-30484-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, October 1995.
|
[24] |
WANG D, TALEGHANI A D, YU B, et al. Numerical simulation of fracture propagation during refracturing[J]. Sustainability, 2022, 14(15): 9422.
|
[25] |
SHI X, GE X, GAO Q, et al. Numerical simulation of hydraulic fracture propagation from recompletion in refracturing with dynamic stress modeling[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2024, 10(1): 155.
|
[26] |
牛小兵, 冯胜斌, 尤源, 等. 致密储层体积压裂作用范围及裂缝分布模式: 基于压裂后实际取心资料[J]. 石油与天然气地质, 2019, 40(3): 669-677.
|
|
NIU Xiaobing, FENG Shengbin, YOU Yuan, et al. Fracture extension and distribution pattern of volume fracturing in tight reservoir: An analysis based on actual coring data after fracturing[J]. Oil & Gas Geology, 2019, 40(3): 669-677.
|
[27] |
RYSAK B, GALE J F W, LAUBACH S E, et al. Mechanisms for the generation of complex fracture networks: Observations from slant core, analog models, and outcrop[J]. Frontiers in Earth Science, 2022, 10: 848012.
|
[28] |
SHI S, ZHUO R, CHENG L, et al. Fracture characteristics and distribution in slant core from conglomerate hydraulic fracturing test site (CHFTS) in Junggar Basin, northwest China[J]. Processes, 2022, 10(8): 1646.
|
[29] |
ZHUO R, MA X, ZHANG S, et al. Classification and assessment of core fractures in a post-fracturing conglomerate reservoir using the AHP–FCE method[J]. Energies, 2023, 16(1): 418.
|
[30] |
GALE J F W, ELLIOTT S J, RYSAK B G, et al. The critical role of core in understanding hydraulic fracturing[J]. Geological Society, London, Special Publications, 2023, 527(1): 317-332.
|
[31] |
PREIKSAITIS M, BAIG A, BOWMAN-YOUNG S, et al. Identifying re-stimulation effectiveness by utilizing microseismic attributes[C]// Paper URTEC-2461172-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, Texas, USA, August 2016.
|
[32] |
MOYER P A, BILEK S L, PHILLIPS W S. Apparent stress variations near the Osa Peninsula, Costa Rica, influenced by subducted bathymetric features[J]. Geophysical Research Letters, 2011, 38(2): L02304.
|
[33] |
李辉, 张涛, 侯雨庭, 等. 鄂尔多斯盆地三叠系延长组长7段陆相页岩层系致密储层充注物性下限及其控制因素[J]. 现代地质, 2024, 38(6): 1498-1510.
|
|
LI Hui, ZHANG Tao, HOU Yuting, et al. Lower limit of physical properties of filling materials in tight reservoirs of the Chang 7 member, Triassic Yanchang formation, Ordos Basin, and their controlling factors[J]. Geoscience, 2024, 38(6): 1498-1510.
|
[34] |
GUO W, ZHU B, LIU Z, et al. Fracture propagation and evaluation of dual wells, multi-fracturing, and split-time in Fuyu oil shale[J]. Geoenergy Science and Engineering, 2024, 239: 212948.
|
[35] |
SULIMAN B, MEEK R, HULL R, et al. Variable stimulated reservoir volume (SRV) simulation: Eagle ford shale case study[C]// Paper SPE-164546-MS presented at the SPE Unconventional Resources Conference-USA, The Woodlands, Texas, USA, April 2013.
|
[36] |
王秀荣, 赵争光, 张燕生, 等. 煤层气压裂微震监测数据高级属性解释技术研究[J]. 中国煤炭地质, 2022, 34(9): 49-54.
|
|
WANG Xiurong, ZHAO Zhengguang, ZHANG Yansheng, et al. Research on advanced microseismic attributes interpretation technology for hydraulic fracturing of coalbed methane reservoir[J]. Coal Geology of China, 2022, 34(9): 49-54.
|
[37] |
李政, 常旭, 姚振兴, 等. 微地震方法的裂缝监测与储层评价[J]. 地球物理学报, 2019, 62(2): 707-719.
doi: 10.6038/cjg2018L0729
|
|
LI Zheng, CHANG Xu, YAO Zhenxing, et al. Fracture monitoring and reservoir evaluation by micro-seismic method[J]. Chinese Journal of Geophysics, 2019, 62(2): 707-719.
|
[38] |
VINCENT M C. Refracs: Why do they work, and why do they fail in 100 published field studies? [C]// Paper SPE-134330-MS presented at the SPE Annual Technical Conference and Exhibition, Florence, Italy, September 2010.
|
[39] |
TIAN L, LI Z, CAO Y, et al. In situ stress distribution and variation monitored by microseismic tracking on a fractured horizontal well: A case study from the Qinshui basin[J]. ACS Omega, 2022, 7(16): 14363-14370.
doi: 10.1021/acsomega.2c01356
pmid: 35573209
|
[40] |
WYSS M, BRUNE J N. Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region[J]. Journal of Geophysical Research, 1968, 73(14): 4681-4694.
|
[41] |
MI L, GUO Y D, LI Y F, et al. Evaluation of the dynamic sealing performance of cap rocks of underground gas storage under multi-cycle alternating loads[J]. Energy Geoscience, 2024, 5(4): 100319.
|
[42] |
杨华, 刘新社, 闫小雄. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏[J]. 地学前缘, 2015, 22(3): 174-183..
doi: 10.13745/j.esf.2015.03.015
|
|
YANG Hua, LIU Xinshe, YAN Xiaoxiong. The relationship between tectonic-sedimentary evolution and tight sandstone gas reservoir since the late Paleozoic in Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3): 174-183
doi: 10.13745/j.esf.2015.03.015
|
[43] |
WANG T, CHEN M, WU J, et al. Making complex fractures by re-fracturing with different plugging types in large stress difference reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108413.
|
[44] |
白晓虎, 齐银, 何善斌, 等. 致密储层水平井压裂-补能-驱油一体化重复改造技术[J]. 断块油气田, 2021, 28(1): 63-67.
|
|
BAI Xiaohu, QI Yin, HE Shanbin, et al. Integrated re-stimulating technology of fracturing-replenishment-displacement of horizontal wells in tight reservoirs[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 63-67.
|
[45] |
解经宇. 龙马溪组页岩射孔井水力压裂裂缝形态模拟实验研究[D]. 武汉: 中国地质大学, 2019.
|
|
XIE Jingyu. Experimental investigation on hydraulic fracture geometry of perforated well in Longmaxi Shale Gas Reservoir[D]. Wuhan: China University of Geosciences, 2019.
|