油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (2): 260-268.doi: 10.13809/j.cnki.cn32-1825/te.2023.02.016
• 工程工艺 • 上一篇
收稿日期:
2021-11-23
发布日期:
2023-04-26
出版日期:
2023-04-26
通讯作者:
朱静怡(1991—),女,博士,助理研究员,从事非常规油气资源的增产改造技术工作。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: 作者简介:
杨兆中(1969—),男,博士,教授,从事油气藏增产改造理论、技术和非常规天然气开发工作。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail:基金资助:
YANG Zhaozhong1(),ZHENG Nanxin1,ZHU Jingyi1,2(
),LI Xiaogang1
Received:
2021-11-23
Online:
2023-04-26
Published:
2023-04-26
摘要:
SiO2纳米颗粒(SNP)与表面活性剂的协同作用可为构建适用于恶劣地层条件下的泡沫压裂液提供一种新思路。实验评估了SiO2纳米颗粒与5种表面活性剂协同稳泡能力,基于泡沫综合值筛选了最优泡沫体系。通过对优选出的泡沫压裂液体系进行携砂性、黏弹性、剪切性、稳定性评价,分析纳米颗粒对压裂液性能的改良。同时利用光学显微镜、环境扫描电子显微镜观察揭示SiO2纳米颗粒稳泡机理。体系筛选实验表明:阳离子型表面活性剂TTAB与SiO2纳米颗粒的协同作用最明显,泡沫综合值达15 288 mm·s,析液半衰期提升了145 %。性能评价实验表明:SiO2纳米颗粒能提升界面液膜的弹性模量,提高液膜对支撑剂的支撑能力,减小沉降速率,有利于泡沫将支撑剂带入更深的裂缝当中;SiO2纳米颗粒还能提高液膜表面的粗糙度,强化泡沫压裂液的抗剪切能力;在体系中加入支撑剂会削弱泡沫的稳定性,陶粒的削弱作用强于石英砂,小粒径的削弱作用强于大粒径的削弱作用。机理研究实验表明:泡沫微观结构中观察到SNP在Plateau边界(3个气泡的交界区)聚集堵塞排液通道,这说明纳米颗粒能够阻止泡沫的粗化和排液,宏观稳定性上表现为气泡数量更多、尺寸更小、分布更均匀。
中图分类号:
Zhaozhong YANG,Nanxin ZHENG,Jingyi ZHU, et al. Preparation of nanoparticle-stabilized foam fracturing fluid and its foam stabilization mechanism[J]. Reservoir Evaluation and Development, 2023, 13(2): 260-268.
[1] | 罗成. CO2准干法压裂技术研究及应用[J]. 石油与天然气化工, 2021, 50(2): 83-87. |
LUO Cheng. Research and application of quasi-dry CO2 fracturing technology[J]. Chemical Engineering of Oil & Gas, 2021, 50(2): 83-87. | |
[2] | 蒋廷学, 左罗, 黄静. 少水压裂技术及展望[J]. 石油钻探技术, 2020, 48(5): 1-8. |
JIANG Tingxue, ZUO Luo, HUANG Jing. Development trends and prospects of less-water hydraulic fracturing technology[J]. Petroleum Drilling Techniques, 2020, 48(5): 1-8. | |
[3] |
徐凤银, 王勃, 赵欣, 等. “双碳”目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探, 2021, 26(3): 9-18.
doi: 10.3969/j.issn.1672-7703.2021.03.002 |
XU Fengyin, WANG Bo, ZHAO Xin, et al. Thoughts and suggestions on promoting high quality development of China's CBM business under the goal of “double carbon”[J]. China Petroleum Exploration, 2021, 26(3): 9-18.
doi: 10.3969/j.issn.1672-7703.2021.03.002 |
|
[4] |
杜燕, 刘超, 高潮, 等. 鄂尔多斯盆地延长探区陆相页岩气勘探开发进展挑战与展望[J]. 中国石油勘探, 2020, 25(2): 33-42.
doi: 10.3969/j.issn.1672-7703.2020.02.004 |
DU Yan, LIU Chao, GAO Chao, et al. Progress, challenges and prospects of the continental shale gas exploration and development in the Yanchang exploration area of the Ordos Basin[J]. China Petroleum Exploration, 2020, 25(2): 33-42.
doi: 10.3969/j.issn.1672-7703.2020.02.004 |
|
[5] | REIDENBACH V G, HARRIS P C, LEE Y N, et al. Rheological study of foam fracturing fluids using nitrogen and carbon dioxide[J]. SPE Production Engineering, 1986, 1(1): 31-41. |
[6] | 杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(5): 1675-1681. |
YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Research progresses on nanoparticle-stabilized foams in oil and gas production[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1675-1681. | |
[7] | 刘子铭, 葛际江, 李嘉苏, 等. 长短碳链甜菜碱型起泡剂的协同增效作用研究[J]. 石油与天然气化工, 2022, 51(5): 92-98. |
LIU Ziming, GE Jijiang, LI Jiasu, et al. Synergistic effect of long and short carbon chain betaine type foaming agent[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 92-98. | |
[8] |
NGUYEN P, FADAEI H, SINTON D. Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery[J]. Energy & Fuels, 2014, 28(10): 6221-6227.
doi: 10.1021/ef5011995 |
[9] |
PENG B L, TANG J T, LUO J H, et al. Applications of nanotechnology in oil and gas industry: Progress and perspective[J]. The Canadian journal of chemical engineering, 2018, 96(1): 91-100.
doi: 10.1002/cjce.v96.1 |
[10] | 张小芹, 陈岳飞, 周雄, 等. 碳纳米颗粒掺杂过渡金属磷化物的制备及其析氢性能研究[J]. 石油与天然气化工, 2022, 51(5): 51-59. |
ZHANG Xiaoqin, CHEN Yuefei, ZHOU Xiong, et al. Preparation and hydrogen evolution performance of carbon nanoparticles-doped transition metal phosphides[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 51-59. | |
[11] |
MAGHZI A, MOHEBBI A, KHARRAT R, et al. An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery[J]. Petroleum Science and Technology, 2013, 31(5): 500-508.
doi: 10.1080/10916466.2010.518191 |
[12] |
ZHU J Y, YANG Z Z, LI X G, et al. Experimental study on the microscopic characteristics of foams stabilized by viscoelastic surfactant and nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572: 88-96.
doi: 10.1016/j.colsurfa.2019.03.087 |
[13] |
PAL N, VERMA A, OJHA K, et al. Nanoparticle-modified gemini-surfactant foams as efficient displacing fluids for enhanced oil recovery[J]. Journal of Molecular Liquids, 2020, 310: 113193.
doi: 10.1016/j.molliq.2020.113193 |
[14] |
ALYOUSEF Z A, ALMOBARKY M A, SCHECHTER D S. The effect of nanoparticle aggregation on surfactant foam stability[J]. Journal of Colloid and Interface science, 2018, 511: 365-373.
doi: S0021-9797(17)31082-2 pmid: 29031155 |
[15] | 杨滢. 高温高盐底水油藏氮气泡沫体系控水及机理研究[D]. 西安: 西安石油大学, 2018. |
YANG Ying. Research water control and mechanism of nitrogen foam system in high temperature and high salinity bottom water reservoir[D]. Xi’an: Xi’an Shiyou University, 2018. | |
[16] |
CHU K C, HU S W, TSAO H K, et al. Strong competition between adsorption and aggregation of surfactant in nanoscale systems[J]. Journal of Colloid and Interface science, 2019, 553: 674-681.
doi: 10.1016/j.jcis.2019.06.075 |
[17] |
LIU P S, NIU L Y, TAO X H, et al. Preparation of superhydrophobic-oleophilic quartz sand filter and its application in oil-water separation[J]. Applied Surface Science, 2018, 447: 656-663.
doi: 10.1016/j.apsusc.2018.04.030 |
[18] | 吴雪鹏. CO2响应清洁压裂液体系的构筑及循环利用机理研究[D]. 青岛: 中国石油大学(华东), 2018. |
WU Xuepeng. Study on the construction and recycling mechanism of CO2 response clean fracturing fluid system[D]. Qingdao: China University of Petroleum(East China), 2018. | |
[19] | 彭欢, 桑宇, 杨建, 等. 泡沫压裂液携砂性能评价方法研究进展及展望[J]. 钻采工艺, 2016, 39(3): 87-90. |
PENG Huan, SANG Yu, YANG Jian, et al. research progress and prospect of sand carrying performance evaluation methods of foam fracturing fluid[J]. Drilling & Production Technology, 2016, 39(3): 87-90. | |
[20] |
ZHU J Y, YANG Z Z, LI X G, et al. Settling behavior of the proppants in viscoelastic foams on the bubble scale[J]. Journal of Petroleum Science and Engineering, 2019, 181: 106216.
doi: 10.1016/j.petrol.2019.106216 |
[21] |
FEI Y, JOHNSON JR R L, GONZALEZ M, et al. Experimental and numerical investigation into nano-stabilized foams in low permeability reservoir hydraulic fracturing applications[J]. Fuel, 2018, 213: 133-143.
doi: 10.1016/j.fuel.2017.10.095 |
[22] |
BINKS B P, KIRKLAND M, RODRIGUES J A. Origin of stabilization of aqueous foams in nanoparticle-surfactant mixtures[J]. Soft Matter, 2008, 4(12): 2373-2382.
doi: 10.1039/b811291f |
[23] | 李兆敏, 王鹏, 李松岩, 等. 纳米颗粒提高二氧化碳泡沫稳定性的研究进展[J]. 西南石油大学学报(自然科学版), 2014, 36(4): 155-161. |
LI Zhaomin, WANG Peng, LI Songyan, et al. Advances of researches on improving the stability of CO2 foams by nanoparticles[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2014, 36(4): 155-161. | |
[24] |
BINKS B P, LUMSDON S O. Influence of particle wettability on the type and stability of surfactant-free emulsions[J]. Langmuir, 2000, 16(23): 8622-8631.
doi: 10.1021/la000189s |
[1] | 张益, 宁崇如, 陈亚舟, 姬玉龙, 赵立阳, 王爱方, 黄晶晶, 于凯怡. 致密油藏大排量注水吞吐技术及参数优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 727-733. |
[2] | 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究 [J]. 油气藏评价与开发, 2024, 14(5): 749-755. |
[3] | 刘绪钢, 李国锋, 李雷, 王锐霞, 方彦明. 页岩油储层压裂液渗吸驱油机理研究 [J]. 油气藏评价与开发, 2024, 14(5): 756-763. |
[4] | 曹小朋, 刘海成, 李忠新, 陈先超, 江朋宇, 樊浩. 基于EDFM的页岩油水平井注水吞吐优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 734-740. |
[5] | 何发岐, 李俊鹿, 高一龙, 吴锦伟, 白兴盈, 高盾. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力 [J]. 油气藏评价与开发, 2024, 14(5): 667-677. |
[6] | 高玉巧, 何希鹏, 程熊, 唐玄, 花彩霞, 昝灵, 张培先, 陈学武, 庞伊伟. 陆相咸化湖盆“低TOC”烃源岩高生烃效率探讨——以苏北盆地溱潼凹陷阜宁组二段泥页岩为例 [J]. 油气藏评价与开发, 2024, 14(5): 678-687. |
[7] | 束青林,魏超平,于田田,计秉玉,张仲平,郑万刚. 稠油开发技术进展及新分类标准建立与应用实践——以胜利油田稠油开发为例 [J]. 油气藏评价与开发, 2024, 14(4): 529-540. |
[8] | 陈祥, 王冠, 刘平礼, 杜娟, 王铭, 陈伟华, 李金龙, 刘金明, 刘飞. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究 [J]. 油气藏评价与开发, 2024, 14(4): 569-576. |
[9] | 李中超, 齐桂雪, 罗波波, 许寻, 陈华. 深层低渗凝析气藏气驱适应性研究 [J]. 油气藏评价与开发, 2024, 14(3): 324-332. |
[10] | 段宏亮,谌廷姗,孙敬,洪亚飞,李思辰,卢显荣,张正阳. 苏北盆地页岩油基质与裂缝流动能力实验研究 [J]. 油气藏评价与开发, 2024, 14(3): 333-342. |
[11] | 孔祥伟,许洪星,时贤,陈杭. 致密砂岩气藏暂堵压裂裂缝起裂扩展实验模拟 [J]. 油气藏评价与开发, 2024, 14(3): 391-401. |
[12] | 郑懿琼, 张涛, 刘海英, 阮聪慧, 邹帅. 近废型稠油油藏火驱效益开发新思路 [J]. 油气藏评价与开发, 2024, 14(3): 504-509. |
[13] | 刘晓. 不同压裂规模下煤储层缝网形态对比研究——以延川南煤层气田为例 [J]. 油气藏评价与开发, 2024, 14(3): 510-518. |
[14] | 李宁,苗贺,曹开芳. 基于叠前方位各向异性的火山岩裂缝预测——以松辽盆地南部LFS地区为例 [J]. 油气藏评价与开发, 2024, 14(2): 197-206. |
[15] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
|