油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (1): 131-141.doi: 10.13809/j.cnki.cn32-1825/te.2025.01.017

• 工程工艺 • 上一篇    下一篇

页岩储层剪切滑移粗糙缝内支撑剂铺置实验研究

张涛1(), 陈洪丽1, 王琨1(), 苟浩然2, 张一凡1, 唐堂1, 周航宇1, 左恒愽1   

  1. 1.西南石油大学石油与天然气工程学院,四川 成都 610500
    2.中国石油长庆油田分公司第七采油厂,陕西 西安 710001
  • 收稿日期:2024-06-11 发布日期:2025-01-26 出版日期:2025-02-26
  • 通讯作者: 王琨 E-mail:zhangt@swpu.edu.cn;569381620@qq.com
  • 作者简介:张涛(1978—),男,硕士,教授,主要从事石油工程领域固液多相流实验和数值模拟研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:zhangt@swpu.edu.cn
  • 基金资助:
    国家自然科学基金项目“湖相多岩相组合页岩油气储层成缝机制及有效开采机理研究”(U23B6004)

Experimental study on proppant placement in rough fractures with shear slippage in shale reservoirs

ZHANG Tao1(), CHEN Hongli1, WANG Kun1(), GOU Haoran2, ZHANG Yifan1, TANG Tang1, ZHOU Hangyu1, ZUO Hengbo1   

  1. 1. Petroleum Engineering School, Southwest Petroleum University, Chengdu, Sichuan 610500, China
    2. No. 7 Oil Production Plant, PetroChina Changqing Oilfield Company, Xi'an, Shaanxi 710001, China
  • Received:2024-06-11 Online:2025-01-26 Published:2025-02-26
  • Contact: WANG Kun E-mail:zhangt@swpu.edu.cn;569381620@qq.com

摘要: 在裂缝剪切滑移和壁面粗糙形态影响下,缝内流体流动通道不均匀,压裂液携砂运移铺置规律更加复杂。选用龙马溪组取心劈裂获得的岩石裂缝面,通过拉伸、叠加、雕刻等手段获得粗糙裂缝平板,构建了单面粗糙支撑剂输送平板裂缝实验装置。采用砂堤形态半定量和固液两相流定量测试方法,开展了非均匀流动通道粗糙缝内不同粗糙度、排量、黏度、粒径条件下的支撑剂输送实验,并对不同粗糙度条件下的裂缝近井带区域进行了PIV(粒子图像测速)/PTV(粒子跟踪测速)技术测试。结果表明:粗糙缝内流动通道不均匀,支撑剂铺置形态受优势通道影响,呈现不规整的凹型结构;流体和支撑剂流经大凸起结构附近时,会改变原来运动方向朝优势通道流动,同时支撑剂运动方向也受到堆积的砂堤形态影响;排量是降低优势通道影响的主控因素,降低排量易对优势通道实现有效封堵;不同黏度、粒径条件下,优势通道影响依然存在,黏度和粒径主要影响支撑剂的输送距离和堆积方式,黏度增大或粒径减小会造成支撑剂输送距离增大,砂堤以“层叠式”堆积。

关键词: 粗糙缝, 剪切滑移, 支撑剂输送, 砂堤形态, PIV技术, PTV技术

Abstract:

Under the influence of fracture shear slippage and wall roughness, the fluid flow channels within the fractures are uneven, making the transport and placement patterns of proppant carried by fracturing fluids more complex. Using core samples from the Longmaxi Formation, rock fracture surfaces were obtained through splitting, and rough fracture plates were created using techniques such as stretching, stacking, and carving to construct an experimental setup for proppant transport in single-sided rough fractures. Semi-quantitative tests of sand dam morphology and quantitative tests of solid-liquid two-phase flow were conducted. Experiments on proppant transport were carried out under conditions of varying roughness, discharge, viscosity, and particle size within the uneven flow channels of rough fractures. Additionally, particle image velocimetry (PIV) / particle tracking velocimetry (PTV) tests were performed in the fracture near-wellbore area under different roughness conditions. Results showed that the flow channels in rough fractures were uneven, and the proppant placement morphology exhibited an irregular concave-like structure, influenced by dominant channels. When fluids and proppants flowed near large protrusions, their original movement direction was altered towards dominant channels. The movement direction of the proppants was also affected by the accumulated sand dam morphology. Discharge was the key factor in reducing the influence of dominant channels, where decreasing discharge could effectively plug these channels. Under varying viscosity and particle size conditions, the influence of dominant channels persisted, with viscosity and particle size mainly affecting the transport distance and accumulation pattern of the proppants. Increased viscosity or reduced particle size led to greater proppant transport distances and layered sand dam accumulation.

Key words: rough fractures, shear slippage, proppant transport, sand dam morphology, PIV technology, PTV technology

中图分类号: 

  • TE357