油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (1): 131-141.doi: 10.13809/j.cnki.cn32-1825/te.2025.01.017
张涛1(), 陈洪丽1, 王琨1(
), 苟浩然2, 张一凡1, 唐堂1, 周航宇1, 左恒愽1
收稿日期:
2024-06-11
发布日期:
2025-01-26
出版日期:
2025-02-26
通讯作者:
王琨
E-mail:zhangt@swpu.edu.cn;569381620@qq.com
作者简介:
张涛(1978—),男,硕士,教授,主要从事石油工程领域固液多相流实验和数值模拟研究。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:zhangt@swpu.edu.cn
基金资助:
ZHANG Tao1(), CHEN Hongli1, WANG Kun1(
), GOU Haoran2, ZHANG Yifan1, TANG Tang1, ZHOU Hangyu1, ZUO Hengbo1
Received:
2024-06-11
Online:
2025-01-26
Published:
2025-02-26
Contact:
WANG Kun
E-mail:zhangt@swpu.edu.cn;569381620@qq.com
摘要: 在裂缝剪切滑移和壁面粗糙形态影响下,缝内流体流动通道不均匀,压裂液携砂运移铺置规律更加复杂。选用龙马溪组取心劈裂获得的岩石裂缝面,通过拉伸、叠加、雕刻等手段获得粗糙裂缝平板,构建了单面粗糙支撑剂输送平板裂缝实验装置。采用砂堤形态半定量和固液两相流定量测试方法,开展了非均匀流动通道粗糙缝内不同粗糙度、排量、黏度、粒径条件下的支撑剂输送实验,并对不同粗糙度条件下的裂缝近井带区域进行了PIV(粒子图像测速)/PTV(粒子跟踪测速)技术测试。结果表明:粗糙缝内流动通道不均匀,支撑剂铺置形态受优势通道影响,呈现不规整的凹型结构;流体和支撑剂流经大凸起结构附近时,会改变原来运动方向朝优势通道流动,同时支撑剂运动方向也受到堆积的砂堤形态影响;排量是降低优势通道影响的主控因素,降低排量易对优势通道实现有效封堵;不同黏度、粒径条件下,优势通道影响依然存在,黏度和粒径主要影响支撑剂的输送距离和堆积方式,黏度增大或粒径减小会造成支撑剂输送距离增大,砂堤以“层叠式”堆积。
中图分类号:
ZHANG Tao,CHEN Hongli,WANG Kun, et al. Experimental study on proppant placement in rough fractures with shear slippage in shale reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 131-141.
[1] | 段瑶瑶, 王欣, 王永辉, 等. 致密砂岩气藏体积改造增产效果数值模拟[J]. 非常规油气, 2015, 2(2): 48-51. |
DUAN Yaoyao, WANG Xin, WANG Yonghui, et al. Numerical simulation of stimulation effect by volume transformation of tight sandstone gas reservoir[J]. Unconventional Oil & Gas, 2015, 2(2): 48-51. | |
[2] | 位云生, 贾爱林, 何东博, 等. 中国页岩气与致密气开发特征与开发技术异同[J]. 天然气工业, 2017, 37(11): 43-52. |
WEI Yunsheng, JIA Ailin, HE Dongbo, et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China[J]. Natural Gas Industry, 2017, 37(11): 43-52. | |
[3] | 周健, 陈勉, 金衍, 等. 压裂中天然裂缝剪切破坏机制研究[J]. 岩石力学与工程学报, 2008, 27(增刊1): 2637-2641. |
ZHOU Jian, CHEN Mian, JIN Yan, et al. Mechanism study of shearing slippage damage of natural fracture in hydraulic fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl. 1): 2637-2641. | |
[4] | YE Z, GHASSEMI A. Injection‐induced shear slip and permeability enhancement in granite fractures[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9009-9032. |
[5] | ABUAISHA M, EATON D, PRIEST J, et al. Hydro-mechanically coupled FDEM framework to investigate near-wellbore hydraulic fracturing in homogeneous and fractured rock formations[J]. Journal of Petroleum Science and Engineering, 2017, 154: 100-113. |
[6] | 陆朝晖, 贾云中, 汤积仁, 等. 深层页岩剪切滑移裂缝渗透率变化规律[J]. 天然气工业, 2021, 41(1): 146-153. |
LU Zhaohui, JIA Yunzhong, TANG Jiren. Evolution laws of fracture permeability of deep shale in the process of shear slip[J]. Natural Gas Industry, 2021, 41(1): 146-153. | |
[7] | KERN L R, PERKINS T K, WYANT R E. The mechanics of sand movement in fracturing[J]. Journal of Petroleum Technology, 1959, 11(7): 55-57. |
[8] | SCHOlS R, VISSER W. Proppant bank buildup in a vertical fracture without fluid loss[C]// Paper SPE-4834-MS presented at the SPE European Spring Meeting, Amsterdam, Netherlands, May 1974. |
[9] | BARREE R D, CONWAY M W. Experimental and numerical modeling of convective proppant transport[J] Journal of Petroleum Technology, 1995, 47(3): 216-222. |
[10] | MCELFRESH P M, WOOD W R, WILLIAMS C F, et al. A study of the friction pressure and proppant transport behavior of surfactant-based gels[C]// Paper SPE-77603-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, September 2002. |
[11] | STABEN M E, ZINCHENKO A Z, DAVIS R H. Motion of a particle between two parallel plane walls in low-Reynolds-number Poiseuille flow[J]. Physics of fluids, 2003, 15(6): 1711-1733. |
[12] | 温庆志, 翟恒立, 罗明良, 等. 页岩气藏压裂支撑剂沉降及运移规律实验研究[J]. 油气地质与采收率, 2012, 19(6): 104-107. |
WEN Qingzhi, ZHAI Hengli, LUO Mingliang, et al. Study on proppant settlement and transport rule in shale gas fracturing[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(6): 104-107. | |
[13] | 温庆志, 高金剑, 刘华, 等. 滑溜水携砂性能动态实验[J]. 石油钻采工艺, 2015, 37(2): 97-100. |
WEN Qingzhi, GAO Jinjian, LIU Hua, et al. Dynamic experiment on slick-water prop-carrying capacity[J]. Oil Drilling & Production Technology, 2015, 37(2): 97-100. | |
[14] | 周德胜, 张争, 惠峰, 等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺, 2017, 39(4): 499-508. |
ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017, 39(4): 499-508. | |
[15] | 吴春方, 刘建坤, 蒋廷学, 等. 压裂输砂与返排一体化物理模拟实验研究[J]. 特种油气藏, 2019, 26(1): 141-146. |
WU Chunfang, LIU Jiankun, JIANG Tingxue, et al. Integrated physical modeling experiment research on sand transport and backflow in fracturing[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 141-146. | |
[16] | ALAJMEI S, MISKIMINS J. Effects of altering perforation configurations on proppant transport and distribution in freshwater fluid[J]. SPE Production & Operations, 2022, 37(4): 681-697. |
[17] | 施振生, 赵圣贤, 赵群, 等. 川南地区下古生界五峰组-龙马溪组含气页岩岩心裂缝特征及其页岩气意义[J]. 石油与天然气地质, 2022, 43(5): 1087-1101. |
SHI Zhensheng, ZHAO Shengxian, ZHAO Qun, et al. Fractures in cores from the Lower Paleozoic Wufeng-Longmaxi shale in southern Sichuan Basin and their implications for shale gas exploration[J]. Oil & Gas Geology, 2022, 43(5): 1087-1101. | |
[18] | 边瑞康, 孙川翔, 聂海宽, 等. 四川盆地东南部五峰组-龙马溪组深层页岩气藏类型、特征及勘探方向[J]. 石油与天然气地质, 2023, 44(6): 1515-1529. |
BIAN Ruikang, SUN Chuanxiang, NIE Haikuan, et al. Types, characteristics, and exploration targets of deep shale gas reservoirs in the Wufeng-Longmaxi formations, southeastern Sichuan Basin[J]. Oil & Gas Geology, 2023, 44(6): 1515-1529. | |
[19] | 潘林华, 张烨, 程礼军, 等. 页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律[J]. 天然气工业, 2018, 38(5): 61-71. |
PAN Linhua, ZHANG Ye, CHENG Lijun, et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry, 2018, 38(5): 61-71. | |
[20] | KIM J Y, JING Z, MORITA N. Proppant transport studies using three types of fracture slot equipment[C]// Paper ARMA-2019-0273 presented at the 53rd U.S. Rock Mechanics/Geomechanics Symposium, New York City, New York, June 2019. |
[21] | PAN L, ZHANG Y, CHENG L, et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry, 2018, 5(6): 606-615. |
[22] | 何思源. 复杂裂缝支撑剂输运规律模拟研究[D]. 成都: 西南石油大学, 2019. |
HE Siyuan. Simulation study on transport law of proppant in complex fractures[D]. Chengdu: Southwest Petroleum University, 2019. | |
[23] | 张学平, 刘友权, 张鹏飞, 等. 大川中沙溪庙致密砂岩储层支撑裂缝导流能力的影响因素[J]. 石油与天然气化工, 2024, 53(3): 92-97. |
ZHANG Xueping, LIU Youquan, ZHANG Pengfei, et al. Influencing factors of the fracture conductivity of propped cracks in the Shaximiao tight sandstone reservoir in central Sichuan[J]. Chemical Engineering of Oil & Gas, 2024, 53(3): 92-97. | |
[24] | RAIMBAY A, BABADAGLI T, KURU E, et al. Effect of fracture surface roughness and shear displacement on permeability and proppant transportation in a single fracture[C]// Paper SPE-171577-MS presented at the SPE/CSUR Unconventional Resources Conference-Canada, Calgary, Alberta, Canada, September 2014. |
[25] | 魏东亚, 梁天博, 白冰洋, 等. 滑溜水压裂中支撑剂在粗糙裂缝内运移沉降的实验研究[C]// 2019油气田勘探与开发国际会议集. 西安, 2019. |
WEI Dongya, LIANG Tianbo, BAI Bingyang, et al. Impact of rough fracture face on proppant transport experimental study in slickwater fracture[C]// International Field Exploration and Development Conference 2019. Xi'an: Xi'an Shiyou University, 2019. | |
[26] | BAHRI A, MISKIMINS J. The effects of fluid viscosity and density on proppant transport in complex slot systems[J]. SPE Production & Operations, 2021, 36(4): 894-911. |
[27] | LI J, LIU P L, KUANG S B, et al. Visual lab tests: Proppant transportation in a 3D printed vertical hydraulic fracture with two-sided rough surfaces[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107738. |
[28] | 石朝龙, 陈军斌, 王晓明, 等. 页岩储层天然裂缝剪切滑移特性实验研究[J]. 西安石油大学学报(自然科学版), 2022, 37(2): 73-80. |
SHI Zhaolong, CHEN Junbin, WANG Xiaoming, et al. Experimental study on shear slip characteristics of natural fracture in shale reservoir[J]. Journal of Xi'an shiyou University(Natural Science Edition), 2022, 37(2) : 73-80. | |
[29] | 杨若愚. 基于粒子成像测速(PIV)的支撑剂输送物理模拟系统研制及应用[D]. 成都: 西南石油大学, 2021. |
YANG Ruoyu. Development and application of particle imaging velocimetry (PIV)-based physical simulation system for proppant transportation[D]. Chengdu: Southwest Petroleum University, 2021. | |
[30] | 曾青冬. 页岩致密储层压裂裂缝扩展数值模拟研究[D]. 青岛: 中国石油大学(华东), 2016. |
ZENG Qingdong. Numerical simulation study of hydraulic fracture propagation in shale and tight reservoirs[D]. Qingdao: China University of Petroleum(East China), 2016. | |
[31] | 张树辉. 页岩水力加砂压裂特征及裂缝形态研究[D]. 北京: 中国矿业大学(北京), 2021. |
ZHANG Shuhui. Research on shale hydraulic sand fracturing characteristics and fracture forms[D]. Beijing: China University of Mining and Technology(Beijing), 2021. |
[1] | 罗宪波, 冯海潮, 刘东, 郑伟, 王树涛, 王公昌. 海上大井距高强度蒸汽吞吐开发规律及开发策略 [J]. 油气藏评价与开发, 2025, 15(1): 116-123. |
[2] | 柴妮娜, 李嘉瑞, 张力文, 王俊杰, 刘亚鹏, 朱伦. 夹层型陆相页岩油储层压裂裂缝扩展实验研究 [J]. 油气藏评价与开发, 2025, 15(1): 124-130. |
[3] | 毛振强. 中高渗断块油藏提高采收率技术实践——以济阳坳陷东营凹陷纯47块为例 [J]. 油气藏评价与开发, 2024, 14(6): 918-924. |
[4] | 赵忠新, 李洪达, 颜艺灿, 任路. 河流相砂岩热储地热田开发利用关键技术——以渤海湾盆地南堡凹陷高尚堡-柳赞地热田为例 [J]. 油气藏评价与开发, 2024, 14(6): 857-863. |
[5] | 贾军红, 余光明, 李姝蔓, 谢珍, 彭荣, 汤勇. 低渗油藏注水井欠注问题主控因素分析——以鄂尔多斯盆地长8段油藏为例 [J]. 油气藏评价与开发, 2024, 14(6): 892-898. |
[6] | 朱浩楠, 曹成, 张烈辉, 赵玉龙, 彭先, 赵梓寒, 陈星宇. CO2驱气提高采收率机理及发展方向 [J]. 油气藏评价与开发, 2024, 14(6): 975-980. |
[7] | 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究 [J]. 油气藏评价与开发, 2024, 14(5): 749-755. |
[8] | 张益, 宁崇如, 陈亚舟, 姬玉龙, 赵立阳, 王爱方, 黄晶晶, 于凯怡. 致密油藏大排量注水吞吐技术及参数优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 727-733. |
[9] | 曹小朋, 刘海成, 李忠新, 陈先超, 江朋宇, 樊浩. 基于EDFM的页岩油水平井注水吞吐优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 734-740. |
[10] | 何发岐, 李俊鹿, 高一龙, 吴锦伟, 白兴盈, 高盾. 鄂尔多斯盆地西南缘断缝体油藏开发特征与潜力 [J]. 油气藏评价与开发, 2024, 14(5): 667-677. |
[11] | 高玉巧, 何希鹏, 程熊, 唐玄, 花彩霞, 昝灵, 张培先, 陈学武, 庞伊伟. 陆相咸化湖盆“低TOC”烃源岩高生烃效率探讨——以苏北盆地溱潼凹陷阜宁组二段泥页岩为例 [J]. 油气藏评价与开发, 2024, 14(5): 678-687. |
[12] | 刘绪钢, 李国锋, 李雷, 王锐霞, 方彦明. 页岩油储层压裂液渗吸驱油机理研究 [J]. 油气藏评价与开发, 2024, 14(5): 756-763. |
[13] | 束青林,魏超平,于田田,计秉玉,张仲平,郑万刚. 稠油开发技术进展及新分类标准建立与应用实践——以胜利油田稠油开发为例 [J]. 油气藏评价与开发, 2024, 14(4): 529-540. |
[14] | 陈祥, 王冠, 刘平礼, 杜娟, 王铭, 陈伟华, 李金龙, 刘金明, 刘飞. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究 [J]. 油气藏评价与开发, 2024, 14(4): 569-576. |
[15] | 李中超, 齐桂雪, 罗波波, 许寻, 陈华. 深层低渗凝析气藏气驱适应性研究 [J]. 油气藏评价与开发, 2024, 14(3): 324-332. |
|