1 |
赵金洲, 任岚, 蒋廷学, 等. 中国页岩气压裂十年: 回顾与展望[J]. 天然气工业, 2021, 41(8): 121-142.
|
|
ZHAO Jinzhou, REN Lan, JIANG Tingxue, et al. Ten years of gas shale fracturing in China: Review and prospect[J]. Natural Gas Industry, 2021, 41(8): 121-142.
|
2 |
蔡勋育, 刘金连, 张宇, 等. 中国石化“十三五”油气勘探进展与“十四五”前景展望[J]. 中国石油勘探, 2021, 26(1): 31-42.
|
|
CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31-42.
|
3 |
张金发, 管英柱, 陈菊, 等. 页岩气压裂技术进展及发展建议[J]. 能源与环保, 2021, 43(10): 102-109.
|
|
ZHANG Jinfa, GUAN Yingzhu, CHEN Ju, et al. Progress and development suggestion of shale gas fracturing technology[J]. China Energy and Environmental Protection, 2021, 43(10): 102-109.
|
4 |
沈云琦, 李凤霞, 张岩, 等. 复杂裂缝网络内支撑剂运移及铺置规律分析[J]. 油气地质与采收率, 2020, 27(5): 134-142.
|
|
SHEN Yunqi, LI Fengxia, ZHANG Yan, et al. Analysis of proppant migration and layout in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5): 134-142.
|
5 |
SAHAI R, MOGHANLOO R G. Proppant transport in complex fracture networks-A review[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106199.
|
6 |
蒋廷学, 卞晓冰, 侯磊, 等. 粗糙裂缝内支撑剂运移铺置行为试验[J]. 中国石油大学学报(自然科学版), 2021, 45(6): 95-101.
|
|
JIANG Tingxue, BIAN Xiaobing, HOU Lei, et al. Experiment on proppant migration and placement behavior in rough fractures[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(6): 95-101.
|
7 |
ISAH A, HIBA M, AL-AZANI K, et al. A comprehensive review of proppant transport in fractured reservoirs: Experimental, numerical, and field aspects[J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103832.
|
8 |
郭天魁, 曲占庆, 李明忠, 等. 大型复杂裂缝支撑剂运移铺置虚拟仿真装置的开发 [J]. 实验室研究与探索, 2018, 37(10): 242-246.
|
|
GUO Tiankui, QU Zhanqing, LI Mingzhong, et al. Development of the large-scale virtual simulation experimental device of proppant transportation and placement in complex fractures[J]. Research and Exploration in Laboratory, 2018, 37(10): 242-246.
|
9 |
WEI G, BABADAGLI T, HUANG H, et al. A visual experimental study: Resin-coated ceramic proppants transport within rough vertical models[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107142.
|
10 |
张潇, 刘欣佳, 田永东, 等. 水力压裂支撑剂铺置形态影响因素研究[J]. 特种油气藏, 2021, 28(6): 113-120.
|
|
ZHANG Xiao, LIU Xinjia, TIAN Yongdong, et al. Study on factors influencing the displacement pattern of hydraulic fracturing proppant[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 113-120.
|
11 |
张学平, 刘友权, 张鹏飞, 等. 大川中沙溪庙致密砂岩储层支撑裂缝导流能力的影响因素[J]. 石油与天然气化工, 2024, 53(3): 92-97.
|
|
ZHANG Xueping, LIU Youquan, ZHANG Pengfei, et al. Influencing factors of the fracture conductivity of propped cracks in the Shaximiao tight sandstone reservoir in central Sichuan[J]. Chemical Engineering of Oil & Gas, 2024, 53(3): 92-97.
|
12 |
HU X, WU K, SONG X, et al. A new model for simulating particle transport in a low-viscosity fluid for fluid-driven fracturing[J]. AIChE Journal, 2018, 64(9): 3542-3552.
|
13 |
XIAO H, LI Z, HE S, et al. Experimental study on proppant diversion transportation and multi-size proppant distribution in complex fracture networks[J]. Journal of Petroleum Science and Engineering, 2021, 196: 107800.
|
14 |
周德胜, 张争, 惠峰, 等. 滑溜水压裂主裂缝内支撑剂输送规律实验及数值模拟[J]. 石油钻采工艺, 2017, 39(4): 499-508.
|
|
ZHOU Desheng, ZHANG Zheng, HUI Feng, et al. Experiment and numerical simulation on transportation laws of proppant in major fracture during slick water fracturing[J]. Oil Drilling & Production Technology, 2017, 39(4): 499-508.
|
15 |
潘林华, 张烨, 程礼军, 等. 页岩储层体积压裂复杂裂缝支撑剂的运移与展布规律[J]. 天然气工业, 2018, 38(5): 61-70.
|
|
PAN Linhua, ZHANG Ye, CHENG Lijun, et al. Migration and distribution of complex fracture proppant in shale reservoir volume fracturing[J]. Natural Gas Industry, 2018, 38(5): 61-70.
|
16 |
孔祥伟, 严仁田, 张思琦, 等. 真三轴大物模水力压裂裂缝起裂及扩展模拟实验[J]. 石油与天然气化工, 2023, 52(3): 97-102.
|
|
KONG Xiangwei, YAN Rentian, ZHANG Siqi, et al. Simulation experiment of fracture initiation and propagation of hydraulic fracturing with true triaxial large physical model[J]. Chemical Engineering of Oil & Gas, 2023, 52(3): 97-102.
|
17 |
郭建春, 路千里, 何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业, 2022, 42(8): 148-161.
|
|
GUO Jianchun, LU Qianli, HE Youwei. Key issues and explorations in shale gas fracturing[J]. Natural Gas Industry, 2022, 42(8): 148-161.
|
18 |
缪欢, 郑洪扬, 范文龙, 等. 四川盆地龙马溪组深层页岩储层压力与含气量动态演化过程[J]. 世界石油工业, 2024, 31(5): 19-29.
|
|
MIAO Huan, ZHENG Hongyang, FAN Wenlong, et al. Dynamic evolution process of pressure and gas content in the Longmaxi Formation deep shale reservoir of Sichuan Basin[J]. World Petroleum Industry, 2024, 31(5): 19-29.
|
19 |
曾波, 冯宁鑫, 姚志广, 等. 深层页岩气储层水力压裂裂缝扩展影响机理[J]. 断块油气田, 2024, 31(2): 246-256.
|
|
ZENG Bo, FENG Ningxin, YAO Zhiguang, et al. Influence mechanism of hydraulic fracturing fracture propagation in deep shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2024, 31(2): 246-256.
|
20 |
潘林华, 张烨, 王海波, 等. 页岩复杂裂缝支撑剂分流机制[J]. 中国石油大学学报(自然科学版), 2020, 44(1): 61-70.
|
|
PAN Linhua, ZHANG Ye, WANG Haibo, et al. Mechanism study on proppants’ division during shale complex fracturing of shale rocks[J]. Journal of China University of Petroleum(Edition of Natural Science), 2020, 44(1): 61-70.
|
21 |
余致理, 肖晖, 宋伟, 等. H202井区H3平台深层页岩气压裂效果分析[J]. 重庆科技学院学报(自然科学版), 2022, 24(3): 29-34.
|
|
YU Zhili, XIAO Hui, SONG Wei, et al. Analysis of fracturing effect of deep shale gas on H3 platform in H202 area[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2022, 24(3): 29-34.
|
22 |
曾军胜, 戴城, 方思冬, 等. 支撑剂在交叉裂缝中运移规律的数值模拟[J]. 断块油气田, 2021, 28(5): 691-695.
|
|
ZENG Junsheng, DAI Cheng, FANG Sidong, et al. Numerical simulation of proppant transport law in intersecting fractures[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 691-695.
|
23 |
ZENG H, JIN Y, QU H, et al. Experimental investigation and correlations for proppant distribution in narrow fractures of deep shale gas reservoirs[J]. Petroleum Science, 2022, 19(2): 619-628.
|
24 |
FJAESTAD D, TOMAC I. Experimental investigation of sand proppant particles flow and transport regimes through narrow slots[J]. Powder Technology, 2019, 343: 495-511.
|