油气藏评价与开发 ›› 2026, Vol. 16 ›› Issue (1): 1-10.doi: 10.13809/j.cnki.cn32-1825/te.20250016

• 专家论坛 • 上一篇    下一篇

深层低渗透油藏CO2驱替特征及开发实践

李阳1(), 王锐2, 陈祖华3, 张尧2, 姬洪明3, 刘昀枫2, 赵清民2   

  1. 1.中国石油化工股份有限公司,北京 100728
    2.中国石化石油勘探开发研究院有限公司,北京 102206
    3.中国石化华东油气分公司,江苏 南京 210019
  • 收稿日期:2025-11-02 发布日期:2026-01-06 出版日期:2026-01-26
  • 作者简介:李阳(1958—),男,博士,中国工程院院士,教授级高级工程师,长期从事油气田开发地质和工程基础理论及技术研究工作。地址:北京市朝阳区朝阳门北大街22号,邮政编码:100728。E-mail: liyang@sinopec.com
  • 基金资助:
    深地国家科技重大专项“油气藏地质体CO2封存状态表征及有效封存量评价研究”(2024ZD1004302)

Characteristics and development practices of CO2 flooding in deep low-permeability reservoirs

LI Yang1(), WANG Rui2, CHEN Zuhua3, ZHANG Yao2, JI Hongming3, LIU Yunfeng2, ZHAO Qingmin2   

  1. 1.China Petroleum & Chemical Corporation, Beijing 100728, China
    2.Sinopec Petroleum Exploration and Production Research Institute Co., Ltd., Beijing 102206, China
    3.Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210019, China
  • Received:2025-11-02 Online:2026-01-06 Published:2026-01-26

摘要:

CO2驱是最主要的提高采收率技术之一,北美地区处于工业化稳定推广阶段,中国已进入工业化应用快速发展阶段。综合对比可知,美国CO2驱应用对象主要集中于中浅层、中低温、低渗透轻质原油油藏,以混相驱类型为主;中国CO2驱油藏埋藏深、温度高、原油黏度偏大,渗透率低、导致注入性差,混相驱实施难度大,CO2驱油效果受到较大制约。以中国东部深层低渗透油藏CO2驱为研究对象,系统剖析了深层低渗透油藏CO2驱替特征,主要表现为混相压力高,渗透率低,注入性相对较差,注水或注气难以有效补充能量,混相驱实施难度大;通过实施早期高压压驱注入补充能量,仍可实现混相驱,需要开展CO2大段塞注入,实施超压注气来维持混相过程;采用气水交替注入,能够有效抑制气窜并扩大波及范围,改善注气开发效果。以草舍油田深层低渗透油藏为例,开展了CO2驱现场试验。结果表明:一次注气采用“先期注、大段塞、全跟踪”方式,实施高压混相驱试验,已提高采收率12.4个百分点,封存率达到85%以上。目前正开展二次注气,采用“分层系开发、低速高部注、变频交替注”开发方式,以“控超覆、控窜流、控水淹” 为原则制定二次注气调整方案,现场试验依旧呈现出良好效果,采收率提高了5.1个百分点,封存率稳定保持在75%,展现出良好的应用成效。

关键词: 深层低渗油藏, CO2驱, 注入性, 保压混相, 气水交替, 扩大波及

Abstract:

CO2 flooding is currently one of the most important enhanced oil recovery technologies. In North America, it has entered a stage of stable industrial deployment, while in China, it has entered a stage of rapid development in industrial application. A comprehensive comparison reveals that CO2 flooding is mainly applied to medium-to-shallow, low-temperature, low-permeability light oil reservoirs, predominantly using miscible flooding in the United States. In contrast, CO2 flooding reservoirs in China are characterized by deeper burial, higher temperatures, lower permeability, and higher crude oil viscosity, resulting in poor injectivity and significant challenges in implementing miscible flooding, thereby limiting the effectiveness of CO2 flooding. Focusing on CO2 flooding in deep, low-permeability reservoirs in East China, this study systematically analyzed the displacement characteristics of CO2 in such reservoirs. The main challenges included high miscibility pressure, low permeability, relatively poor injectivity, difficulty in effectively replenishing energy through water or gas injection, and significant challenges in implementing miscible flooding. However, miscible flooding can still be achieved through early high-pressure injection to supplement reservoir energy. Additionally, large-slug CO2 injection requires over-pressured gas injection to maintain the miscible process. Gas-alternating-water injection could effectively achieve gas channeling control, expand sweep efficiency, and improve development performance of gas injection. A field pilot test of CO2 flooding in the deep, low-permeability reservoir of Caoshe oilfield was conducted. The results showed that the primary gas injection employed an “early-stage injection, large slug, and full-process tracking” approach to conduct high-pressure miscible flooding tests, achieving a 12.4% increase in oil recovery and a CO2 storage rate of over 85%. Currently, secondary gas injection is being implemented using a strategy of “layered development, low-speed high-interval injection, and variable-frequency alternating injection”. Based on the principles of "controlling override, preventing channeling, and curbing water flooding", a secondary gas injection adjustment plan is formulated. Field tests continue to show promising results, with an additional 5.1% increase in oil recovery and a storage rate maintained at 75%, demonstrating strong application potential.

Key words: deep low-permeability reservoirs, CO2 flooding, injectivity, pressure-maintained miscibility, water-alternating-gas, sweep efficiency

中图分类号: 

  • TE357