[1] |
罗蛰潭, 王允成. 油气储集层的孔隙结构[M]. 北京: 科学出版社, 1986.
|
|
LUO Zhetan, WANG Yuncheng. Pore structure of oil and gas reservoirs[M]. Beijing: Science Press, 1986.
|
[2] |
端祥刚, 高树生, 胡志明, 等. 页岩微纳米孔隙多尺度渗流理论研究进展[J]. 特种油气藏, 2017, 24(5):1-9.
|
|
DUAN Xianggang, GAO Shusheng, HU Zhiming, et al. Research progress in multi-scale percolation theory in shale micro-nano pores[J]. Special Oil and Gas Reservoirs, 2017, 24(5):1-9.
|
[3] |
孙寅森, 郭少斌. 渝东南彭水地区龙马溪组页岩孔隙结构特征及吸附性能控制因素[J]. 海相油气地质, 2018, 23(1):63-74.
|
|
SUN Yinsen, GUO Shaobin. Pore structure of shale and controlling factors of adsorption performance of Longmaxi formation in Pengshui area, Southeast Chongqing[J]. Marine Origin Petroleum Geology, 2018, 23(1):63-74.
|
[4] |
许晨曦, 薛海涛, 李波宏, 等. 页岩气在矿物孔隙中的微观吸附机理差异性研究[J]. 特种油气藏, 2020, 27(4):79-84.
|
|
XU Chenxi, XUE Haitao, LI Bohong, et al. Microscopic adsorption mechanism difference in the mineral pore of shale gas reservoir[J]. Special Oil and Gas Reservoirs, 2020, 27(4):79-84.
|
[5] |
章新文, 李吉君, 卢双舫, 等. 构造变形对页岩孔隙结构及吸附性的影响[J]. 特种油气藏, 2018, 25(3):32-36.
|
|
ZHANG Xinwen, LI Jijun, LU Shuangfang, et al. Effects of structural deformation on shale pore structure and adsorption[J]. Special Oil and Gas Reservoirs, 2018, 25(3):32-36.
|
[6] |
高凤琳, 宋岩, 姜振学, 等. 黏土矿物对页岩储集空间及吸附能力的影响[J]. 特种油气藏, 2017, 24(3):1-8.
|
|
GAO Fenglin, SONG Yan, JIANG Zhenxue, et al. Influence of clay minerals on shale storage space and adsorptive capacity. 2017, 24(3):1-8.
|
[7] |
OUGIER-SIMONIN A, RENARD F, BOEHM C, et al. Microfracturing and microporosity in shales[J]. Earth-Science Reviews, 2016, 162:198-226.
doi: 10.1016/j.earscirev.2016.09.006
|
[8] |
GALE J F W, LAUBACH S E, OLSON J E, et al. Natural fractures in shale: A review and new observations[J]. AAPG Bulletin, 2014, 98(11):2165-2216.
doi: 10.1306/08121413151
|
[9] |
伍岳, 樊太亮, 蒋恕, 等. 海相页岩储层微观孔隙体系表征技术及分类方案[J]. 地质科技情报, 2014, 33(4):91-97.
|
|
WU Yue, FAN Tailiang, JIANG Shu, et al. Characterizing techniques and classification methods for microscope pore system in marine shale reservoir[J]. Geological Science and Technology Information, 2014, 33(4):91-97.
|
[10] |
NELSON P H. Pore-throat sizes in sandstones, tight sandstones, and shales[J]. AAPG Bulletin, 2009, 93(3):329-340.
doi: 10.1306/10240808059
|
[11] |
LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
doi: 10.2110/jsr.2009.092
|
[12] |
谭静强, 张煜麟, 罗文彬, 等. 富有机质泥页岩微纳米孔隙结构研究进展[J]. 矿物岩石地球化学通报, 2019, 38(1):18-29.
|
|
TAM Zhiqiang, ZHANG Yulin, LUO Wenbin, et al. Research progress on microscale and nanoscale pore structures of organic-rich muddy shales[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019, 38(1):18-29.
|
[13] |
CAMP W K. Pore-throat sizes in sandstones, tight sandstones, and shales: Discussion[J]. AAPG Bulletin, 2011, 95(8):1443-1447.
doi: 10.1306/12141010019
|
[14] |
吴春燕, 程玉群, 沈英, 等. 延长陆相页岩微观孔隙结构分析[J]. 非常规油气, 2016, 3(3):21-26.
|
|
WU Chunyan, CHENG Yuqun, SHEN Ying, et al. Analysis of microscopic pore structures in Yanchang continental shale[J]. Unconventional oil & Gas, 2016, 3(3):21-26.
|
[15] |
ANOVITZ L M, COLE D R, SWIFT A, et al. Multiscale (nano to mm) porosity in the Eagle Ford Shale: Changes as a function of maturity [C]// Paper presented at the Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014.
|
[16] |
ROSS D J K, MARC BUSTIN R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6):916-927.
doi: 10.1016/j.marpetgeo.2008.06.004
|
[17] |
彭钰洁, 刘鹏, 吴佩津. 页岩有机质热演化过程中孔隙结构特征研究[J]. 特种油气藏, 2018, 25(5):141-145.
|
|
PENG Yujie, LIU Peng, WU Peijin. Pore structure characterization of shale organic matter during thermal evolution[J]. Special Oil and Gas Reservoirs, 2018, 25(5):141-145.
|
[18] |
杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1):42-58.
|
|
YANG Yueming, CHEN Yulong, LIU Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan basin and its periphery[J]. Natural Gas Industry, 2021, 41327(1):42-58.
|
[19] |
刘树根, 焦堃, 张金川, 等. 深层页岩气储层孔隙特征研究进展——以四川盆地下古生界海相页岩层系为例[J]. 天然气工业, 2021,41;No.327(1):29-41.
|
|
LIU Shugen, JIAO Kun, ZHANG Jinchuan, et al. Research progress on the pore characteristics of deep shale gas reservoirs: An example from the lower Paleozoic marine shale in the Sichuan basin[J]. Natural Gas Industry, 2021, 41(1):29-41.
|
[20] |
SUN M D, ZHAO J L, PAN Z J, et al. Pore characterization of shales: A review of small angle scattering technique[J]. Journal of Natural Gas Science and Engineering, 2020, 78:103294.
doi: 10.1016/j.jngse.2020.103294
|
[21] |
李长喜, 胡法龙, 俞军, 等. 基于机器学习图像分割算法的页岩储层微观孔隙结构评价方法[C]. 第二十一届测井年会, 2020.
|
|
LI Changxi, HU Falong, YU Jun, et al. Shale reservoir micro pore structure evaluation through machine learning based image segmentation[C]. 21th Logging Annual Meeting, 2020
|
[22] |
张涛, 张希巍. 页岩孔隙定性与定量方法的对比研究[J]. 天然气勘探与开发, 2017, 40(4):34-43.
|
|
ZHANG Tao, ZHANG Xiwei, Comparative study on qualitative and quantitative methods for shale pore characterization[J]. Natural Gas Exploration and Development, 2017, 40(4):34-43.
|
[23] |
杨峰, 宁正福, 孔德涛, 等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3):450-455.
|
|
YANG Feng, NING Zhengfu, KONG Defu, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3):450-455.
|
[24] |
庞河清, 曾焱, 刘成川, 等. 基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J]. 岩矿测试, 2017, 36(1):66-74.
|
|
PANG Heqing, ZENG Yan, LIU Chengchuan, et al. Investigation of pore structure of a argillaceous rocks Reservoir in the 5th member of Xujiahe formation in western Sichuan, using NAM, NMR and AIP-FESEM[J]. Rock and Mineral Analysis, 2017, 36(1):66-74.
|
[25] |
ZHANG P F, LU S F, LI J Q, et al. Comparisons of SEM, low-field NMR and MICP in characterization of the pore size distribution of lacustrine shale: A case study on the Dongying depression, Bohai Bay basin, China[J]. Energy & Fuels, 2017, 31(9):9232-9239.
doi: 10.1021/acs.energyfuels.7b01625
|
[26] |
孙中良, 王芙蓉, 韩元佳, 等. 江汉盆地潜江凹陷古近系潜江组盐间可动页岩油赋存空间多尺度表征[J]. 石油实验地质, 2020, 42(4):586-595.
|
|
SUN Zhongliang, WANG Furong, HAN Yuanjia, et al. Multi-scale characterization of the spatial distribution of movable hydrocarbon in intersalt shale of Qianjiang Formation, Qianjiang Sag, Jianghan Basin[J]. Petroleum Geology & Experiment, 2020, 42(4):586-595.
|
[27] |
张盼盼, 刘小平, 王雅杰, 等. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 2014, 29(11):1242-1249.
|
|
ZHANG Panpan, LIU Xiaoping, WANG Yajie, et al. Research progress in shale nanopores[J]. Advances in Earth Science, 2014, 29(11):1242-1249.
|
[28] |
NOLE M, DAIGLE H, MILLIKEN K L, et al. A method for estimating microporosity of fine-grained sediments and sedimentary rocks via scanning electron microscope image analysis[J]. Sedimentology, 2016, 63(6):1507-1521.
doi: 10.1111/sed.12271
|
[29] |
焦堃, 姚素平, 吴浩, 等. 页岩气储层孔隙系统表征方法研究进展[J]. 高校地质学报, 2014, 20(1):151-161.
|
|
JIAO Kun, YAO Suping, WU Hao, et al. Advances in characterization of pore system of gas shales[J]. Geological Journal of China Universities, 2014, 20(1):151-161.
|
[30] |
SARAJI S, PIRI M. High-resolution three-dimensional characterization of pore networks in shale reservoir rocks [C]. Unconventional Resources Technology Conference, 2014.
|
[31] |
SONG W H, YAO J, MA J S, et al. Pore-scale numerical investigation into the impacts of the spatial and pore-size distributions of organic matter on shale gas flow and their implications on multiscale characterisation[J]. Fuel, 2018, 216:707-721.
doi: 10.1016/j.fuel.2017.11.114
|
[32] |
高凤琳, 王成锡, 宋岩, 等. 氩离子抛光—场发射扫描电镜分析方法在识别有机显微组分中的应用[J]. 石油实验地质, 2021, 43(2):360-367.
|
|
GAO Fenglin, WANG Chengxi, SONG Yan, et al. Ar-ion polishing FE-SEM analysis of organic maceral identification[J]. Petroleum Geology & Experiment, 2021, 43(2):360-367.
|
[33] |
FENG X, ZENG J H, ZHAN H B, et al. Resolution effect on image-based conventional and tight sandstone pore space reconstructions: Origins and strategies[J]. Journal of Hydrology, 2020, 586:124856.
doi: 10.1016/j.jhydrol.2020.124856
|