油气藏评价与开发 ›› 2022, Vol. 12 ›› Issue (2): 329-336.doi: 10.13809/j.cnki.cn32-1825/te.2022.02.008
收稿日期:
2021-09-28
出版日期:
2022-04-26
发布日期:
2022-05-07
作者简介:
杨兵(1995—),男,硕士,助理工程师,从事排水采气工艺研究及现场应用工作。地址:内蒙古自治区鄂尔多斯市乌审旗图克镇中国石化华北油气分公司采气一厂采气管理一区,邮政编码:017318。E-mail: YANG Bing1(),ZHANG Tailai1,LI Jia2,ZHAO Jianjun1,WANG Chengfeng1
Received:
2021-09-28
Online:
2022-04-26
Published:
2022-05-07
摘要:
大牛地气田下古气藏地层水矿化度高、呈偏酸性,多采用井下节流工艺,导致气田广泛使用的两性泡排剂起泡、稳泡性能差,无法满足高效、低成本排水采气的需求。国内外虽已形成几十种泡排剂,但针对大牛地气田下古气藏特性研制的泡排剂未见报道。针对下古气藏流体和工艺特点,考虑高矿化度地层水的影响、对pH的敏感度及泡沫通过节流器时的稳定性等因素,构建一种以磺化AEO3(椰油醇聚氧乙烯(3)醚)与月桂酰胺丙基磷酸甜菜碱为主剂、椰子油脂肪酸单乙醇酰胺为助泡剂、油患子精华素为稳泡剂的新型两性非离子复合型泡排剂。室内评价表明,两性非离子复合型泡排剂在高矿化度、酸性环境下具有较强的起泡、稳泡、二次起泡和携液能力;现场试验应用后,气井排液能力提升、油套压差降低、产气量增加,应用效果和经济效益前景良好。两性非离子复合型泡排剂填补了大牛地气田下古气藏泡排剂的空缺,可改善下古气藏气井携液不足的技术难题,具有推广应用价值。
中图分类号:
杨兵,张泰来,李佳,赵建军,王成锋. 新型两性非离子型泡排剂在下古气藏的试验与应用[J]. 油气藏评价与开发, 2022, 12(2): 329-336.
YANG Bing,ZHANG Tailai,LI Jia,ZHAO Jianjun,WANG Chengfeng. Test and application of new amphoteric-nonionic foaming agents in Lower Palaeozoic gas reservoir[J]. Reservoir Evaluation and Development, 2022, 12(2): 329-336.
表1
大牛地气田地层水性质及工艺差异"
气藏 | 地层水性质 | 节流 工艺 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
K++Na+ (mg/L) | Ca2+ (mg/L) | Mg2+ (mg/L) | SO42- (mg/L) | HCO3- (mg/L) | Cl- (mg/L) | 矿化度 (g/L) | pH | 水型 | ||
上古 | 4 147~14 435 | 1 236~13 721 | 66~1 028 | 0~291 | 223~1 023 | 7 621~52 678 | 14~79 | 6.0~6.2 | CaCl2 | 站内节流 |
下古 | 10 752~16 652 | 40 409~59 088 | 7 447~8 999 | 2 266~2 675 | 590~876 | 88 147~155 201 | 150~260 | 4.8~5.4 | CaCl2 | 井下节流 |
表5
A井试验前后生产数据"
对比 项目 | 试验前 | 试验稳定期间 | 试验后 | ||
---|---|---|---|---|---|
5月11日—5月17日 | 5月28日—6月14日 | 6月15日—6月21日 | |||
泡排剂 | 两性泡排剂 | 新型泡排剂 | 两性泡排剂 | ||
加注周期 | 每天一次 | 每天一次 | 每天一次 | ||
加注量(L) | 5 | 5 | 5 | ||
药水比例 | 1∶10 | 1∶10 | 1∶10 | ||
产气量 (m3/d) | 532~3 286 2 109 | 2 509~3 937 3 196 | 2 793~3 408 3 017 | ||
产液量 (m3/d) | 0.21~0.68 0.43 | 0.57~1.85 0.94 | 0.33~0.66 0.44 | ||
油压 (MPa) | 1.00~1.80 1.43 | 1.03~2.347 1.38 | 1.20~1.90 1.63 | ||
套压 (MPa) | 5.60~6.10 5.80 | 5.50~5.80 5.63 | 5.72~5.90 5.86 | ||
油套压差 (MPa) | 3.80~5.06 4.37 | 3.03~4.55 4.25 | 4.00~4.70 4.23 |
[1] | 王传磊. 大牛地气田增压集输工艺技术研究[D]. 东营:中国石油大学(华东), 2014. |
WANG Chuanlei. Research on the technology of supercharged gathering and transportation progress in Daniudi Gas Field[D]. Dongying: China University of Petroleum (East China), 2014. | |
[2] | 储铭汇. 致密碳酸盐岩储层复合缝网酸压技术研究及矿场实践--以大牛地气田下古生界马五5碳酸盐岩储层为例[J]. 石油钻采工艺, 2017, 39(2):237-243. |
CHU Minghui. Study on composite fracture-network acid fracturing technology for tight carbonate reservoirs and its field application: A case study on Mawu5 carbonate reservoir of Lower Paleozoic in Daniudi Gasfield[J]. Oil Drilling and Production Technology, 2017, 39(2): 237-243. | |
[3] | 唐明远. 大牛地气田奥陶系风化壳马五5亚段储层特征研究[D]. 成都:西南石油大学, 2017. |
TANG Mingyuan.Study on the formation characteristics of the weathered Ma 5 layer of Ordovician system in Daniudi Gas Field[D]. Chengdu: Southwest Petroleum University, 2017. | |
[4] | 王海坤, 马献珍, 李刘宝, 等. 南北并进,直指千万吨![J]. 中国石油石化, 2021, 24(12):48-49. |
WANG Haikun, MA Xianzhen, LI Liubao, et al. North and South go hand in hand, pointing to ten million tons![J]. China Petroleum and Petrochemical, 2021(12): 48-49. | |
[5] | 陈克全. 大牛地气田水平井生产制度与采气工艺研究[D]. 东营:中国石油大学(华东), 2016. |
CHEN Kequan. Research on the production system and the gas production process of the horizontal well in the Daniudi Gas Field[D]. Dongying: China University of Petroleum (East China), 2016. | |
[6] | 覃伟, 李仲东, 郑振恒, 等. 鄂尔多斯盆地大牛地气田地层水特征及成因分析[J]. 岩性油气藏, 2011, 23(5):115-120. |
QIN Wei, LI Zhongdong, ZHENG Zhenheng, et al. Characteristics and genesis of formation water in Daniudi Gas Field, Ordos Basin[J]. Lithologic Reservoirs, 2011, 23(5): 115-120. | |
[7] | 魏凯. 大牛地气田下古生界含硫气井清防垢剂的研制[J]. 天然气技术与经济, 2021, 15(2):21-26. |
WEI Kai. Developing scale removing and inhibiting agent for the Lower Paleozoic sour gas wells, Daniudi gasfield[J]. Natural Gas Technology and Economy, 2021, 15(2): 21-26. | |
[8] | BLUESTEIN R, HITTON L. Amphoteric surfactants[M]. New York: Marcel Dekker, 1982. |
[9] |
HASAN A R, KABIR C S. A study of multiphase flow behavior in vertical wells[J]. SPE Production Engineering, 1988, 3(2): 263-272.
doi: 10.2118/15138-PA |
[10] | JELINEK W, SCHRAMM L L. Improved production from mature gas wells by introducing surfactants into wells[C]// Paper IPTC-11028-MS presented at the International Petroleum Technology Conference, Doha, Qatar, November 2005. |
[11] | DINO D J, HOMACK A. Use of high purity imidazoline based amphoacetate surfactant as foaming went in oil wells: EP96912193.8U[P]. 2001-07-18. |
[12] | PRICE B P, GOTHARD B. Foam assisted lift-importance of selection and application[C]// Paper SPE-106465-MS presented at the Production and Operations Symposium, Oklahoma City, Oklahoma, U.S.A., March 2007. |
[13] | 彭年穗. 气井泡沫排液中的起泡剂[J]. 油田化学, 1989, 6(1):84-89. |
PENG Nianhui. The foaming agents for removing water from gas wells[J]. Oilfield Chemistry, 1989, 6(1): 84-89. | |
[14] | JING Y. High performance foams for unloading gas well: US7422064[P]. 2007-03-05. |
[15] | KOCZO K, TSELINIK O, FALK B, et al. Aqueous foaming compositions with high tolerance to hydrocarbons: US8524641[P]. 2013-09-03. |
[16] | ZIKA H T. Surfactant composition: US3746096[P]. 1973-07-17. |
[17] | NGUYEN D T, HUANG F. Quatenary foamers for downhole injection: US8746341[P]. 2014-06-10. |
[18] | TURNER R G, HUBBARD M G, DUKLER A E. Analysis and prediction of minimum flow rate for the continuous removal of liquids from gas wells[J]. Journal of Taiyuan University of Technology, 1969, 21(11): 1475-1482. |
[19] | LEA J F, NICKENS H V. Solving gas-well liquid-loading problems[J]. Journal of Petroleum Technology, 2004, 56(4): 30-36. |
[20] | 张成斌, 米伟伟, 井文超, 等. 延安气田排水采气工艺实践[J]. 天然气勘探与开发, 2019, 42(4):121-126. |
ZHANG Chengbin, MI Weiwei, JING Wenchao, et al. Practice on drainage gas recovery used in Yan’an gasfield[J]. Natural Gas Exploration and Development, 2019, 42(4): 121-126. | |
[21] | 周际永, 伊向艺, 卢渊. 国内外排水采气工艺综述[J]. 太原理工大学学报, 2005(S1):44-45. |
ZHOU Jiyong, YI Xiangyi, LU Yuan. Summary of domestic and foreign drainage gas recovery technology[J]. Journal of Taiyuan University of Technology, 2005(S1): 44-45. | |
[22] | 徐慧芬. L-抗坏血酸硬脂酸酯的酶法制备新工艺及表面活性性质研究[D]. 无锡:江南大学, 2016. |
XU Huifen. L-ascorbyl stearate: The novel enzymatic process to prepare it and its colloid properties[D]. Wuxi: Jiangnan University, 2016. | |
[23] | 王钰璠, 谢荣锦. 椰油酸单乙醇酰胺的合成与应用[J]. 精细石油化工进展, 2002, 3(5):1-4. |
WANG Yufan, XIE Rongjin. Synthesis and application of coconut fatty acid monoethanolamide[J]. Advances in Fine Petrochemicals, 2002, 3(5): 1-4. | |
[24] | LYU Z G, WANG L, DENG S F, et al. China shale gas exploration: early Sichuan Basin Longmaxi Shale Gas stimulation and completion case study[C]// paper SPE-166746-MS presented at the SPE Middle East Drilling Technology Conference and Exhibition, 7-9October 2013, Dubai, UAE. |
[25] | 刘慧. 高温高压条件下泡排剂评价方法[J]. 实验室研究与探索, 2020, 39(7):24-27. |
LIU Hui. Research on evaluation methods of foaming agent under high temperature and high pressure[J]. Research and Exploration in Laboratory, 2020, 39(7): 24-27. | |
[26] | 刘佩. 神木气田耐油耐盐泡排剂的研制及性能评价[D]. 西安:陕西科技大学, 2019. |
LIU Pei. Development and performance evaluation of oil-resistant and salt-tolerant foam drainage agent in Shenmu Gas Field[D]. Xi’an: Shaanxi University of Science and Technology, 2019. | |
[27] |
ARRIETA V V, TORRALBA A O, HERNANDEZ P C, et al. Case history: Lessons learned from retrieval of coiled tubing stuck by massive hydrate plug when well testing in an ultradeepwater gas well in Mexico[J]. SPE Production and Operations, 2011, 26(4): 337-342.
doi: 10.2118/140228-PA |
[28] | 田巍, 杜利, 王明, 等. 井筒积液对储层伤害及产能的影响[J]. 特种油气藏, 2016, 23(2):124-127. |
TIAN Wei, DU Li, WANG Ming, et al. Effect of liquid loading on reservoir and productivity[J]. Special Oil and Gas Reservoirs, 2016, 23(2): 124-127. |
[1] | 李宁,苗贺,曹开芳. 基于叠前方位各向异性的火山岩裂缝预测——以松辽盆地南部LFS地区为例 [J]. 油气藏评价与开发, 2024, 14(2): 197-206. |
[2] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
[3] | 魏海峰. CO2捕集利用与封存经济效益及财税政策分析 [J]. 油气藏评价与开发, 2024, 14(2): 277-283. |
[4] | 赵坤,李泽阳,刘娟丽,胡可,江冉冉,王伟祥,刘秀珍. 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践 [J]. 油气藏评价与开发, 2024, 14(1): 83-90. |
[5] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[6] | 罗宪波. 海上砂砾岩油藏层间与层内干扰实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 117-123. |
[7] | 舒华文. 胜利油田百万吨级CCUS输注采关键工程技术 [J]. 油气藏评价与开发, 2024, 14(1): 10-17. |
[8] | 叶晓东,陈军,陈曦,王海妹,王慧珺. “双碳”目标下的中国CCUS技术挑战及对策 [J]. 油气藏评价与开发, 2024, 14(1): 1-9. |
[9] | 张乐, 刘长龙, 寇磊, 陈征, 张璐, 徐元德, 王胜, 薛德栋. 海上油田大斜度井缆控智能分层注聚技术研究及应用 [J]. 油气藏评价与开发, 2024, 14(1): 133-137. |
[10] | 唐建东, 王智林, 葛政俊. 苏北盆地江苏油田CO2驱油技术进展及应用 [J]. 油气藏评价与开发, 2024, 14(1): 18-25. |
[11] | 李建山, 高浩, 鄢长灏, 王石头, 王亮亮. 原油-CO2相互作用机理分子动力学模拟研究 [J]. 油气藏评价与开发, 2024, 14(1): 26-34. |
[12] | 许国晨, 刘晓文. 提高水井分注测试成功率配套技术研究与应用 [J]. 油气藏评价与开发, 2023, 13(6): 773-780. |
[13] | 夏海帮, 韩克宁, 宋文辉, 王伟, 姚军. 页岩气藏多尺度孔缝介质压裂液微观赋存机理研究 [J]. 油气藏评价与开发, 2023, 13(5): 627-635. |
[14] | 张家伟, 刘向君, 熊健, 梁利喜, 任建飞, 刘佰衢. 双井同步压裂裂缝扩展规律离散元模拟 [J]. 油气藏评价与开发, 2023, 13(5): 657-667. |
[15] | 崔传智, 李怀亮, 吴忠维, 张传宝, 李弘博, 张营华, 郑文宽. 考虑压驱注水诱发裂缝影响的注水井压力分析 [J]. 油气藏评价与开发, 2023, 13(5): 686-694. |
|