[1] |
邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14.
|
|
ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14.
|
[2] |
张金川, 史淼, 王东升, 等. 中国页岩气勘探领域和发展方向[J]. 天然气工业, 2021, 41(8): 69-80.
|
|
ZHANG Jinchuan, SHI Miao, WANG Dongsheng, et al. Fields and directions for shale gas exploration in China[J]. Natural Gas Industry, 2021, 41(8): 69-80.
|
[3] |
车世琦. 涪陵气田平桥区块页岩气选区评价[J]. 石油地质与工程, 2022, 36(4): 48-54.
|
|
CHE Shiqi. Selection evaluation of shale gas in Pingqiao block of Fuling gas field[J]. Petroleum Geology & Engineering, 2022, 36(4): 48-54.
|
[4] |
高志飞, 许寻, 王坤, 等. 低渗、特低渗轻质油藏溶解气驱气体流动临界饱和度研究[J]. 石油地质与工程, 2021, 35(3): 63-66.
|
|
GAO Zhifei, XU Xun, WANG Kun, et al. Study on gas critical gas saturation of dissolved gas flooding in light oil reservoir with low permeability and ultra-low permeability[J]. Petroleum Geology & Engineering, 2021, 35(3): 63-66.
|
[5] |
CIVAN F. Effective correlation of apparent gas permeability in tight porous media[J]. Transport in Porous Media, 2010, 82(2): 375-384.
doi: 10.1007/s11242-009-9432-z
|
[6] |
CIVAN F, RAI C S, SONDERGELD C H. Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms[J]. Transport in Porous Media, 2011, 86(3): 925-944.
doi: 10.1007/s11242-010-9665-x
|
[7] |
WU K L, LI X F, GUO C H, et al. Adsorbed gas surface diffusion and bulk gas transport in nanopores of shale reservoirs with real gas effect-adsorption-mechanical coupling[C]// Paper SPE-173201-MS presented at the SPE Reservoir Simulation Symposium, Houston, Texas, USA, February 2015.
|
[8] |
吴克柳, 李相方, 陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7): 837-848.
doi: 10.7623/syxb201507008
|
|
WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoirs[J]. Acta Petrolei Sinica, 2015, 36(7): 837-848.
doi: 10.7623/syxb201507008
|
[9] |
岳陈军, 张烈辉, 赵玉龙, 等. 考虑表面扩散的页岩气渗透率两区复合解析模型[J]. 水动力学研究与进展(A辑), 2016, 31(3): 362-371.
|
|
YUE Chenjun, ZHANG Liehui, ZHAO Yulong, et al. A dual-zone composite analytic model for shale gas permeability considering surface diffusion[J]. Chinese Journal of Hydrodynamics, 2016, 31(3): 362-371.
|
[10] |
顾岱鸿, 丁道权, 刘军, 等. 三重介质页岩气藏分段压裂水平井产能预测模型[J]. 大庆石油地质与开发, 2016, 35(1): 158-165.
|
|
GU Daihong, DING Daoquan, LIU Jun, et al. Productivity predicting model of the staged fractured horizontal well in triple-media shale gas reservoirs[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(1): 158-165.
|
[11] |
OZKAN E, BROWN M, RAGHAVAN R, et al. Comparison of fractured-horizontal-well performance in tight sand and shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(2): 248-259.
|
[12] |
杨兆中, 廖梓佳, 李小刚, 等. 非均布导流下页岩气藏压裂水平井产量模拟[J]. 西南石油大学学报(自然科学版), 2021, 43(3): 93-100.
doi: 10.11885/j.issn.16745086.2020.03.09.01
|
|
YANG Zhaozhong, LIAO Zijia, LI Xiaogang, et al. Production simulation of fractured horizontal well with non-uniform space distribution of fracture conductivity in shale gas reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(3): 93-100.
doi: 10.11885/j.issn.16745086.2020.03.09.01
|
[13] |
蒲谢洋, 胡永全, 赵金洲, 等. 考虑微观渗流的页岩气藏拉链式压裂水平井产能预测[J]. 新疆石油地质, 2016, 37(5): 565-570.
|
|
PU Xieyang, HU Yongquan, ZHAO Jinzhou, et al. Productivity prediction of zipper-like fracturing horizontal wells in shale gas reservoirs with considering microscopic flow[J]. Xinjiang Petroleum Geology, 2016, 37(5): 565-570.
|
[14] |
何易东, 任岚, 赵金洲, 等. 页岩气藏体积压裂水平井产能有限元数值模拟[J]. 断块油气田, 2017, 24(4): 550-556.
|
|
HE Yidong, REN Lan, ZHAO Jinzhou, et al. Finite element numerical simulation of shale gas production of hydraulically fractured horizontal well with stimulated reservoir volume[J]. Fault-block Oil & Gas Field, 2017, 24(4): 550-556.
|
[15] |
ZHAO J Z, LI Z Q, HU Y Q, et al. The impacts of microcosmic flow in nanoscale shale matrix pores on the gas production of a hydraulically fractured shale-gas well[J]. Journal of Natural Gas Science & Engineering, 2016, 29(1): 431-439.
|
[16] |
胡小虎. 页岩气非均匀压裂水平井非稳态产能评价方法[J]. 断块油气田, 2021, 28(4): 519-524.
|
|
HU Xiaohu. Transient productivity evaluation method for shale gas uneven-fractured horizontal well[J]. Fault-block Oil & Gas Field, 2021, 28(4): 519-524.
|
[17] |
刘嘉, 陈俊, 芮福鑫, 等. 离散裂隙网络对页岩气井产能影响的数值模拟[J]. 煤田地质与勘探, 2017, 45(6): 66-71.
|
|
LIU Jia, CHEN Jun, RUI Funxin, et al. Numerical simulation for effect of discrete fracture network on shale gas productivity of horizontal well[J]. COAL GEOLOGY & EXPLORATION, 2017, 45(6): 66-71.
|
[18] |
向雪冰, 司马立强, 王亮, 等. 页岩气储层孔隙流体划分及有效孔径计算——以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4): 137-146.
|
|
XIANG Xuebing, SIMA Liqiang, WANG Liang, et al. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4): 137-146.
|
[19] |
王志伟, 卢双舫, 王民, 等. 湖相、海相泥页岩孔隙分形特征对比[J]. 岩性油气藏, 2016, 28(1): 88-93.
|
|
WANG Zhiwei, LU Shuangfang, WANG Min, et al. Fractal characteristics of lacustrine shale and marine shale[J]. Lithologic Reservoirs, 2016, 28(1): 88-93.
|
[20] |
BESKOK A, KAMIADAKIS G E. A model for flows in channels, pipes, and ducts at micro and nano scales[J]. Microscale Thermophysical Engineering, 1999, 3(1): 43-77.
doi: 10.1080/108939599199864
|
[21] |
BEHRANG A, KANTZAS A. A hybrid methodology to predict gas permeability in nanoscale organic materials; a combination of fractal theory, kinetic theory of gases and Boltzmann transport equation[J]. Fuel, 2017, 188: 239-245.
doi: 10.1016/j.fuel.2016.10.014
|
[22] |
李亚雄, 刘先贵, 胡志明, 等. 页岩气滑脱、扩散传输机理耦合新方法[J]. 物理学报, 2017, 66(11): 230-240.
|
|
LI Yaxiong, LIU Xiangui, HU Zhiming, et al. A new method for the transport mechanism coupling of shale gas slippage and diffusion[J]. Acta Physica Sinica, 2017, 66(11): 230-240.
|
[23] |
贾爱林, 位云生, 刘成, 等. 页岩气压裂水平井控压生产动态预测模型及其应用[J]. 天然气工业, 2019, 39(6): 71-80.
|
|
JIA Ailin, WEI Yunsheng, LIU Cheng, et al. A dynamic prediction model of pressure control production performance of shale gas fractured horizontal wells and its application[J]. Natural Gas Industry, 2019, 39(6): 71-80.
|
[24] |
孔祥言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 1999.
|
|
KONG Xiangyan. Advanced mechanics of fluids in porous media[M]. Hefei: University of Science and Technology of China Press, 1999.
|
[25] |
赵玉龙, 梁洪彬, 井翠, 等. 页岩气井EUR快速评价新方法[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 124-131.
doi: 10.11885/j.issn.1674-5086.2019.09.16.09
|
|
ZHAO Yulong, LIANG Hongbin, JING Cui, et al. A new method for quick EUR evaluation of shale gas wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 124-131.
doi: 10.11885/j.issn.1674-5086.2019.09.16.09
|