[1] |
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望-以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.
doi: 10.7623/syxb201202001
|
|
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
doi: 10.7623/syxb201202001
|
[2] |
张宏学, 刘卫群. 页岩气开采的相关实验、模型和环境效应[J]. 岩土力学, 2014, 35(S2): 85-100.
|
|
ZHANG Hongxue, LIU Weiqun. Relevant experiments, models and environmental effect of shale gas production[J]. Rock and Soil Mechanics, 2014, 35(S2):85-100.
|
[3] |
张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46.
|
|
ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Reservoir Evaluation and Development, 2022, 12(1): 29-46.
|
[4] |
易同生, 陈捷. 黔西石炭系页岩气赋存特征与勘探潜力[J]. 油气藏评价与开发, 2022, 12(1): 82-94.
|
|
YI Tongsheng, CHEN Jie. Occurrence characteristics and exploration potential of Carboniferous shale gas in western Guizhou[J]. Reservoir Evaluation and Development, 2022, 12(1): 82-94.
|
[5] |
曾义金, 杨春和, 张保平. 页岩气开发工程中的理论与实践[M]. 北京: 科学出版社, 2017.
|
|
ZENG Yijin, YANG Chunhe, ZHANG Baoping. The theory and practice in shale gas development engineering[M]. Beijing: Science Press, 2017.
|
[6] |
张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1): 80-86.
|
|
ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(1): 80-86.
|
[7] |
兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5): 27-32.
|
|
LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32.
|
[8] |
唐颖, 张金川, 张琴, 等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 30(10): 33-38.
|
|
TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of hydraulic fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10): 33-38.
|
[9] |
曾慧勇, 陈立峰, 陈亚东, 等. 压裂-驱油一体化工作液研究进展[J]. 油气地质与采收率, 2022, 29(3): 162-170.
|
|
ZENG Huiyong, CHEN Lifeng, CHEN Yadong, et al. Research progress on fracturing-oil displacement integrated working fluid[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 162-170.
|
[10] |
刘子军. 基于Pearson 相关系数的低渗透砂岩油藏重复压裂井优选方法[J]. 油气地质与采收率, 2022, 29(2): 140-144.
|
|
LIU Zijun. Method for selecting repeated fracturing wells in low-permeability sandstone reservoirs based on Pearson correlation coefficient[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 140-144.
|
[11] |
崔青. 美国页岩气压裂增产技术[J]. 石油化工应用, 2010, 29(10): 1-3.
|
|
CUI Qing. Fracture-stimulation technology of American shale gas[J]. Petrochemical Industry Application, 2010, 29(10): 1-3.
|
[12] |
CHEN X Y, LI Y M, ZHAO J Z, et al. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2017, 51: 44-52.
doi: 10.1016/j.jngse.2017.12.014
|
[13] |
DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers & Geotechnics, 2016, 71: 283-294.
|
[14] |
杨喜萍, 胡景宏, 付亮, 等. 致密砂岩气藏射孔完井裂缝起裂压力研究[J]. 石油地质与工程, 2022, 36(6): 92-99.
|
|
YANG Xiping, HU Jinghong, FU Liang, et al. Fracture initiation pressure of perforation completion in tight sandstone gas reservoir[J]. Petroleum Geology & Engineering, 2022, 36(6): 92-99.
|
[15] |
LIU X Q, RASOULI V, GUO T K, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J]. Engineering Fracture Mechanics, 2020, 238: 107278.
doi: 10.1016/j.engfracmech.2020.107278
|
[16] |
MANRIQUEZ A L. Stress behavior in the near fracture region between adjacent horizontal wells during multistage fracturing using a coupled stress-displacement to hydraulic diffusivity model[J]. Journal of Petroleum Science and Engineering, 2018, 162: 822-834.
doi: 10.1016/j.petrol.2017.11.009
|
[17] |
SHAN Q L, ZHANG R X, JIANG Y J. Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2021, 89(1).
|
[18] |
LI XIANG, FENG Z J, HAN G, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76.
doi: 10.1007/s40948-016-0022-6
|
[19] |
XUE J Q, LI N Y, LU X B. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters[J]. Petroleum, 2017, 3(4): 454-460.
doi: 10.1016/j.petlm.2017.04.001
|
[20] |
WU Y, HUANG Z, ZHAO K, et al. Unsteady seepage solutions for hydraulic fracturing around vertical wellbores in hydrocarbon reservoirs[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9496-9503.
doi: 10.1016/j.ijhydene.2020.01.222
|
[21] |
BRUNO M S, NAKAGAWA F M. Bore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and, 1991, 28(4): 261-273.
|
[22] |
CUNDALL P A. A discontinuous future for numerical modelling in geomechanics?[J]. Geotechnical Engineering, 2001, 149(1): 41-47.
|
[23] |
DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294.
doi: 10.1016/j.compgeo.2015.06.007
|
[24] |
DUAN K, LI Y C, YANG W D. Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7.
|
[25] |
KWOK C Y, DUAN K, PIERCE M. Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method[J]. Acta Geotechnica, 2020, 15(1): 245.
doi: 10.1007/s11440-019-00858-y
|
[26] |
李静, 孔祥超, 宋明水, 等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
|
|
LI Jing, KONG Xiangchao, SONG Mingshui, et al. Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation[J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156.
|
[27] |
AL-BUSAIDI A, HAZZARD J F, YOUNG R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite[J]. Journal Geophysical Research-Oceans, 2005, 110: B06302.
|
[28] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
doi: 10.1680/geot.1979.29.1.47
|
[29] |
刘鹏. 砂砾岩水压致裂机理的实验与数值模拟研究[D]. 北京: 中国矿业大学(北京), 2017.
|
|
LIU Peng. Experimental and numerical simulating studies on hydrofracturing mechanism of glutenite[D]. Beijing: China University of Mining and Technology(Beijing), 2017.
|
[30] |
SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 187(1009): 229-260.
|