油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (5): 647-656.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.012
收稿日期:
2022-11-08
出版日期:
2023-10-26
发布日期:
2023-11-01
通讯作者:
樊冬艳(1985—),女,博士,副教授,现从事非常规油气试井及动态分析方法研究。地址:山东省青岛市黄岛区长江西路66号,邮政编码:266580。E-mail:作者简介:
韩克宁(1976-),男,本科,高级工程师,现从事页岩气勘探开发技术和管理工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210000。E-mail:基金资助:
HAN Kening1(),WANG Wei1,FAN Dongyan2(),YAO Jun2,LUO Fei2,YANG Can2
Received:
2022-11-08
Online:
2023-10-26
Published:
2023-11-01
摘要:
针对常压页岩气井产气递减规律不明确、预测困难等问题,将产量递减模型与机器学习方法相结合,建立了一种新的页岩气井产量递减模型与LSTM(长短时间记忆神经网络)模型耦合预测方法。首先,依据页岩气井产水特点将南川常压页岩气井分为2类,类型1气井早期气水同产,后期产水明显减少,类型2气井长时间气水同产;其次,基于双对数诊断曲线和特征曲线明确气井的流动阶段,并采用7种常用的气井产量递减模型对不同类型页岩气井进行产量分析;最后,将递减模型的误差作为LSTM模型的输入,叠加得到耦合方法下产量预测。结果表明:拟稳态流动阶段的类型1的X1气井,优选递减模型为改进双曲递减模型和AKB递减模型,线性流动阶段的类型2的X2气井,优选SEPD(扩展指数递减)模型和Duong递减模型;对于递减模型误差较大时,耦合LSTM模型后,页岩气井产量预测精度明显提高,而递减模型误差较小时效果不显著。
中图分类号:
韩克宁, 王伟, 樊冬艳, 姚军, 罗飞, 杨灿. 基于产量递减与LSTM耦合的常压页岩气井产量预测[J]. 油气藏评价与开发, 2023, 13(5): 647-656.
HAN Kening, WANG Wei, FAN Dongyan, YAO Jun, LUO Fei, YANG Can. Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 647-656.
表1
X1井递减模型预测结果及对比"
分析方法 | 检验平均 误差/ % | 5 a后 日产气量/ m3 | 10 a 累产气量/ 108 m3 | 可采 储量/ 108 m3 | 剩余可采 储量/ 108 m3 |
---|---|---|---|---|---|
指数递减 | 5.43 | 15 068.31 | 1.01 | 1.06 | 0.76 |
双曲递减 | 6.41 | 16 330.13 | 1.02 | 1.65 | 1.35 |
改进双曲递减 | 3.75 | 18 449.74 | 1.08 | 1.79 | 1.49 |
SEPD | 10.98 | 41 951.91 | 1.87 | 28.14 | 27.84 |
PLE | 5.94 | 32 128.20 | 1.52 | 2.88 | 2.59 |
Duong递减 | 3.95 | 31 257.25 | 1.50 | 5.18 | 5.17 |
AKB递减 | 3.85 | 17 832.17 | 1.08 | 1.36 | 1.07 |
表2
X1井耦合方法预测结果及对比"
分析方法 | 检验 平均 误差/% | 5 a后 日产气量/ m3 | 10 a累 产气量/ 108 m3 | 可采 储量/ 108 m3 | 剩余可采 储量/ 108 m3 |
---|---|---|---|---|---|
指数递减+LSTM | 3.14 | 13 874.96 | 0.96 | 0.98 | 0.68 |
双曲递减+LSTM | 3.84 | 20 096.66 | 1.14 | 1.96 | 1.44 |
改进双曲递减+LSTM | 5.38 | 15 099.31 | 0.96 | 1.45 | 1.32 |
SEPD+LSTM | 4.33 | 35 492.72 | 1.63 | 25.34 | 25.07 |
PLE+LSTM | 6.23 | 29 230.75 | 1.42 | 2.75 | 2.41 |
Duong递减+LSTM | 4.15 | 30 748.86 | 1.48 | 5.03 | 4.98 |
AKB递减+LSTM | 3.99 | 19 444.62 | 1.13 | 1.53 | 1.36 |
表3
X2井递减模型预测结果及对比"
序号 | 分析方法 | 检验平均误差/% | 5 a后日产气量/m3 | 10 a累产气量/108 m3 | 可采储量/108 m3 | 剩余可采储量/108 m3 |
---|---|---|---|---|---|---|
1 | 指数递减 | 18.94 | 140 | 0.17 | 0.17 | 0.04 |
2 | 双曲递减 | 17.07 | 2 519 | 0.24 | 0.28 | 0.17 |
3 | 改进双曲递减 | 19.01 | 2 459 | 0.24 | 0.27 | 0.16 |
4 | SEPD | 13.30 | 2 075 | 0.23 | 0.23 | 0.12 |
5 | PLE | 15.43 | 1 579 | 0.21 | 0.21 | 0.1 |
6 | Duong递减 | 13.54 | 4 327 | 0.43 | 0.43 | 0.31 |
7 | AKB递减 | 23.47 | 1 257 | 0.20 | 0.20 | 0.08 |
表4
X2井耦合方法预测结果及对比"
序号 | 分析方法 | 检验平均误差/% | 5 a后日产气量/m3 | 10 a累产气量/108 m3 | 可采储量/108 m3 | 剩余可采储量/108 m3 |
---|---|---|---|---|---|---|
1 | 指数递减+LSTM | 3.14 | 3 147 | 0.17 | 0.19 | 0.06 |
2 | 双曲递减+LSTM | 3.84 | 2 887 | 0.25 | 0.31 | 0.19 |
3 | 改进双曲递减+LSTM | 5.38 | 2 798 | 0.25 | 0.30 | 0.17 |
4 | SEPD+LSTM | 4.33 | 3 051 | 0.26 | 0.27 | 0.13 |
5 | PLE+LSTM | 6.23 | 1 146 | 0.19 | 0.19 | 0.10 |
6 | Duong递减+LSTM | 4.15 | 4 660 | 0.44 | 0.46 | 0.35 |
7 | AKB递减+LSTM | 3.99 | 1 524 | 0.20 | 0.21 | 0.10 |
[1] | 何希鹏, 张培先, 房大志, 等. 渝东南彭水—武隆地区常压页岩气生产特征[J]. 油气地质与采收率, 2018, 25(5): 72-79. |
HE Xipeng, ZHANG Peixian, FANG Dazhi, et al. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing[J]. Petroleum Geology and Recovery Efficiency, 2018, 25(5): 72-79. | |
[2] | 姜宇玲, 陈晓宇, 包汉勇. 页岩气分段压裂水平井产量递减快速预测新模型——以涪陵页岩气田为例[J]. 天然气地球科学, 2021, 32(6): 845-850. |
JIANG Yuling, CHEN Xiaoyu, BAO Hanyong. A new model for rapid prediction of horizontal well production decline in shale gas staged fracturing: Case study of Fuling shale gas field[J]. Natural Gas Geoscience, 2021, 32(6): 845-850. | |
[3] | 付天宇, 刘启国, 岑雪芳, 等. 碳酸盐岩三重介质气藏NPI产量递减分析研究[J]. 油气藏评价与开发, 2021, 11(6): 905-910. |
FU Tianyu, LIU Qiguo, CEN Xuefang, et al. Normalized pressure integral production analysis of triporate-uniphase parallel inter-porosity flow model[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 905-910. | |
[4] | YU S Y. Best practice of using empirical methods for production forecast and EUR estimation in tight/shale gas reservoirs[C]// Paper SPE-167118-MS presented at the SPE Unconventional Resources Conference Canada, Calgary, Alberta, Canada, November 2013. |
[5] | FULFORD D S, BLASINGAME T A. Evaluation of time- rate performance of shale wells using the transient hyperbolic relation[C]// Paper SPE-167242-MS presented at the SPE Unconventional Resources Conference, Calgary, Alberta, Canada, November 2013. |
[6] | 闫建平, 罗静超, 石学文, 等. 川南泸州地区奥陶系五峰组—志留系龙马溪组页岩裂缝发育模式及意义[J]. 岩性油气藏, 2022, 34(6): 60-71. |
YAN Jianping, LUO Jingchao, SHI Xuewen, et al. Fracture development models and significance of Ordovician Wufeng Silurian Longmaxi shale in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(6): 60-71. | |
[7] | 王静怡, 周志军, 魏华彬, 等. 基于页岩孔隙网络模型的油水两相流动模拟[J]. 岩性油气藏, 2021, 33(5): 148-154. |
WANG Jingyi, ZHOU Zhijun, WEI Huabin, et al. Simulation of oil-water two-phase flow based on shale pore network model[J]. Lithologic Reservoirs, 2021, 33(5): 148-154. | |
[8] | CÉDRIC F G, OUASSIM K, SOHEIL E. Improved time series decline curve analysis for oil production using recurrent neural network[C]// Paper presented at the Artificial Intelligence Principles and Techniques, Stanford University, USA, 2019. |
[9] | SUN J L, MA X, KAZI M. Comparison of decline curve analysis DCA with recursive neural networks RNN for production forecast of multiple wells[C]// Paper SPE-190101-MS presented at the SPE Western Regional Meeting, Garden Grove, California, USA, April 2018. |
[10] | 温康, 闫建平, 钟光海, 等. 川南长宁地区五峰组—龙马溪组页岩气评价新方法[J]. 岩性油气藏, 2022, 34(1): 95-105. |
WEN Kang, YAN Jianping, ZHONG Guanghai, et al. Application of modified unbiased grey model to the prediction of oil and gas field production[J]. Lithologic Reservoirs, 2022, 34(1): 95-105. | |
[11] |
SONG X Y, LIU Y T, XUE L, et al. Time-series well performance prediction based on Long Short-Term Memory (LSTM) neural network model[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106682.
doi: 10.1016/j.petrol.2019.106682 |
[12] |
SAGHEER A, KOTB M. Time series forecasting of petroleum production using deep LSTM recurrent networks[J]. Neurocomputing, 2019, 323: 203-213.
doi: 10.1016/j.neucom.2018.09.082 |
[13] |
LEE K, LIM J, YOON D, et al. Prediction of shale-gas production at Duvernay formation using deep-learning algorithm[J]. SPE Journal, 2019, 24(6): 2423-2437.
doi: 10.2118/195698-PA |
[14] | BAGHERI M, ZHAO H R, SUN M Y, et al. Data conditioning and forecasting methodology using machine learning on production data for a well pad[C]// Paper OTC-30854-MS presented at the Offshore Technology Conference, Houston, Texas, USA, May 2020. |
[15] | IMAMVERDIYEV Y, ABDULLAYEVA F. Development of oil production forecasting method based on deep learning[J]. Statistics Optimization & Information Computing, 2019, 7(4): 826-839. |
[16] |
LIU W, LIU W D, GU J W. Forecasting oil production using ensemble empirical model decomposition based Long Short-Term Memory neural network[J]. Journal of Petroleum Science and Engineering, 2020, 189: 107013.
doi: 10.1016/j.petrol.2020.107013 |
[17] |
KARASU S, ALTAN A, BEKIROS S, et al. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series[J]. Energy 2020, 212: 118750.
doi: 10.1016/j.energy.2020.118750 |
[18] | ARPS J J. Analysis of decline curves[J]. Petroleum Transactions, 1945, 160(1): 228-247. |
[19] | SESHADRI J, MATTAR L. Comparison of power law and modified hyperbolic decline methods[C]// Paper SPE-137320-MS presented at the Canadian Unconventional Resources and International Petroleum Conference, Calgary, Alberta, Canada, October 2010. |
[20] | ILK D, PEREGO A D, RUSHING J A, et al. Integrating multiple production analysis techniques to assess tight gas sand reserves: Defining a new paradigm for industry best practices[C]// Paper SPE-114947-MS presented at the CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, Alberta, Canada, June 2008. |
[21] | ILK D, RUSHING J A, PEREGO A D, et al. Exponential vs. hyperbolic decline in tight gas sands: understanding the origin and implications for reserve estimates using Arps' decline curves[C]// Paper SPE-116731-MS presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, September 2008. |
[22] | VALKO P P, LEE W J. A better way to forecast production from unconventional gas wells[C]// Paper SPE-134231-MS presented at the SPE Annual Technical conference and Exhibition, Florence, Italy, September 2010. |
[23] | VALKO P P. Assigning value to stimulation in the Barnett Shale:A simultaneous analysis of 7 000 plus production histories and well completion records[C]// Paper SPE-119369-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, January 2009. |
[24] | DUONG A N. Rate-decline analysis for fracture-dominated shale reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2011, 14(3): 377-387. |
[25] | DUONG A N. Rate-decline analysis for fracture dominated shale reservoirs: Part2[C]// Paper SPE-171610-MS presented at the SPE/CSUR Unconventional Resources Conference-Canada, Calgary, Alberta, Canada, September 2014. |
[26] | YU S Y, LEE W J, MIOCEVIC D J, et al. Estimating proved reserves in tight/shale wells using the modified SEPD method[C]// Paper SPE-166198-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013. |
[27] | ANSAH J, KNOWLES R S, BLASINGAME T A. A semi-analytic(p/z)rate time relation for the analysis and prediction of gas well performance[J]. SPE Reservoir Evaluation & Engineering, 2000, 3(6): 525-533. |
[28] |
HOCHREITER S, SCHMIDHUBER J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276 |
[1] | 姚红生, 王伟, 何希鹏, 郑永旺, 倪振玉. 南川复杂构造带常压页岩气地质工程一体化开发实践 [J]. 油气藏评价与开发, 2023, 13(5): 537-547. |
[2] | 薛冈, 熊炜, 张培先. 常压页岩气藏成因分析与有效开发——以四川盆地东南缘地区五峰组—龙马溪组页岩气藏为例 [J]. 油气藏评价与开发, 2023, 13(5): 668-675. |
[3] | 蒋恕,李醇,陈国辉,郭彤楼,吴聿元,何希鹏,高玉巧,张培先. 中美常压页岩气赋存状态及其对可动性与产量的影响——以彭水和阿巴拉契亚为例 [J]. 油气藏评价与开发, 2022, 12(3): 399-406. |
[4] | 王运海,任建华,陈祖华,梅俊伟,胡春锋,王伟,卢比. 常压页岩气田一体化效益开发及智能化评价 [J]. 油气藏评价与开发, 2021, 11(4): 487-496. |
[5] | 胡春锋,梅俊伟,李仕钊,卢比,马军,钱劲. 四川盆地东部南川常压页岩气开发效果地质与工程因素分析 [J]. 油气藏评价与开发, 2021, 11(4): 559-568. |
[6] | 何希鹏,高玉巧,何贵松,张培先,刘明,孙斌,汪凯明,周頔娜,任建华. 渝东南南川页岩气田地质特征及勘探开发关键技术 [J]. 油气藏评价与开发, 2021, 11(3): 305-316. |
[7] | 杨怀成,夏苏疆,高启国,毛国扬. 常压页岩气全电动压裂装备及技术示范应用效果分析 [J]. 油气藏评价与开发, 2021, 11(3): 348-355. |
[8] | 张国荣,王俊方,张龙富,陈士奎. 南川常压页岩气田高效开发关键技术进展 [J]. 油气藏评价与开发, 2021, 11(3): 365-376. |
[9] | 彭勇民,龙胜祥,何希鹏,唐建信,聂海宽,高玉巧,薛冈,凡渝东,刘雨林. 彭水地区常压页岩气储层特征及有利区评价 [J]. 油气藏评价与开发, 2020, 10(5): 12-19. |
[10] | 刘厚裕. 页岩气低密度三维地震勘探方法适应性评估分析 [J]. 油气藏评价与开发, 2020, 10(5): 34-41. |
[11] | 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用 [J]. 油气藏评价与开发, 2020, 10(5): 70-76. |
[12] | 段承琏,魏风玲,魏瑞玲,刘芳,刘静,吴小丁. 彭水区块常压页岩气高效排采技术研究 [J]. 油气藏评价与开发, 2020, 10(1): 64-70. |
[13] | 方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策 [J]. 油气藏评价与开发, 2019, 9(5): 1-13. |
[14] | 郭彤楼. 页岩气勘探开发中的几个地质问题 [J]. 油气藏评价与开发, 2019, 9(5): 14-19. |
[15] | 何希鹏,齐艳平,何贵松,高玉巧,刘明,张培先,汪凯明. 渝东南构造复杂区常压页岩气富集高产主控因素再认识 [J]. 油气藏评价与开发, 2019, 9(5): 32-39. |
|