[1] |
方圆, 张万益, 马芬, 成丽芳, 等. 全球页岩油资源分布与开发现状[J]. 矿产保护与利用, 2019, 39(5): 126-134.
|
|
FANG Yuan, ZHANG Wanyi, MA Fen, et al. Research on the global distribution and development status of shale oil[J]. Conservation and Utilization of Mineral, 2019, 39(5): 126-134.
|
[2] |
沈云琦, 金之钧, 苏建政, 等. 中国陆相页岩油储层水平渗透率与垂直渗透率特征——以渤海湾盆地济阳坳陷和江汉盆地潜江凹陷为例[J]. 石油与天然气地质, 2022, 43(2): 378-389.
|
|
SHEN Yunqi, JIN Zhijun, SU Jianzheng, et al. Characteristics of horizontal and vertical permeability of continental shale oil reservoirs in China: A case from Jiyang Depression in Bohai Bay Basin and Qianjiang Sag in Jianghan Basin[J]. Oil & Gas Geology, 2022, 43(2): 378-389.
|
[3] |
周庆凡. 页岩油气资源评价基本问题的讨论[J]. 石油与天然气地质, 2022, 43(1): 26-33.
|
|
ZHOU Qingfan. Discussion on key issues of shale oil/gas resource assessment[J]. Oil & Gas Geology, 2022, 43(1): 26-33.
|
[4] |
刘刚, 杨东, 梅显旺, 等. 松辽盆地古龙页岩油大规模压裂后闷井控排方法[J]. 大庆石油地质与开发, 2020, 39(3): 147-154.
|
|
LIU Gang, YANG Dong, MEI Xianwang, et al. Method of well-soaking and controlled flow back after large-scale fracturing of Gulong shale oil reservoirs in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 147-154.
|
[5] |
尚胜祥. 超临界CO2和助溶剂混相提高页岩油采收率研究[D]. 青岛: 中国石油大学(华东), 2018.
|
|
SHANG Shengxiang. Study on the mixture of supercritical CO2 and cosolvent to improve shale oil recovery[D]. Qingdao: China University of Petroleum(East China), 2018.
|
[6] |
黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864.
doi: 10.7623/syxb202007007
|
|
HUANG Xing, NI Jun, LI Xiang, et al. Characteristics and influenced factors of CO2 flooding indifferent microscopic pore structures in tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 853-864.
doi: 10.7623/syxb202007007
|
[7] |
肖文联, 任吉田, 王磊飞, 等. 鄂尔多斯盆地西233区长7 页岩油注伴生气原油动用特征实验[J]. 油气地质与采收率, 2022, 29(5): 91-101.
|
|
XIAO Wenlian, REN Jitian, WANG Leifei, et al. Experimental study on oil production characteristics in shale oil from Xi233 area Chang7 reservoir during injecting associated gas[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 91-101.
|
[8] |
黄程, 霍丽如, 吴辰泓. 基于非常规油气开发的CO2资源化利用技术进展及前景[J]. 非常规油气, 2022, (1): 1-9.
|
|
HUANG Cheng, HUO Liru, WU Chenhong. Progress and prospect of CO2 resource utilization technology based on unconventional oil and gas development[J]. Unconventional Oil & Gas, 2022, (1): 1-9.
|
[9] |
CLARK A J. Determination of recovery factor in the Bakken Formation, Mountrail County, ND[C]// Paper SPE-133719-STU presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 2009.
|
[10] |
WAN T, SHENG J, WATSON M. Compositional modeling of the diffusion effect on EOR process in fractured shale oil reservoirs by gas flooding[C]// Paper URTEC-1891403-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014.
|
[11] |
SHENG J J, COOK T, BARNES W, et al. Screening of the EOR potential of a Wolfcamp shale oil reservoir[C]// Paper ARMA-2015-438 presented at the 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2015.
|
[12] |
ALAVIAN S A. Modeling CO2 injection in fractured reservoirs using single matrix block systems[D]. Trondheim: Norwegian University of Science and Technology, 2011.
|
[13] |
MEHANA M, KANG Q J, VISWANATHAN H. Molecular-scale considerations of enhanced oil recovery in shale[J]. Energies, 2020, 13(24): 6619.
doi: 10.3390/en13246619
|
[14] |
王强, 李志明, 钱门辉, 等. 超临界二氧化碳萃取泥页岩中可动油实验研究[J]. 石油实验地质, 2020, 42(4): 646-652.
|
|
WANG Qiang, LI Zhiming, QIAN Menhui, et al. Movable oil extraction from shale with supercritical carbon dioxide[J]. Petroleum Geology & Experiment, 2020, 42(4): 646-652.
|
[15] |
张鑫璐. 富有机质泥页岩超临界CO2萃取产物组分与滞留油赋存状态[D]. 北京: 中国石油大学(北京), 2018.
|
|
ZHANG Xinlu. The compositions of supercritical CO2 extraction products and the occurrence state of retained oil in organic-rich shales[D]. Beijing: China University of Petroleum(Beijing), 2018.
|
[16] |
桂文宇, 宫厚健, 吕威, 等. 醇类助剂降低CO2与页岩油最小混相压力实验研究[C]// 2020油气田勘探与开发国际会议论文集, 西安: 西安石油大学, 2020: 7.
|
|
GUI Wenyu, GONG Houjian, LYU Wei, et al. Experimental study on reduction of CO2 and minimum miscible pressure of shale oil by alcohol additives[C]// Proceedings of the 2020 International Conference on Oil and Gas Field Exploration and Development, Xi’an, Xi’an Shiyou University, 2020: 7.
|
[17] |
ALLAWZI M, AL-OTOOM A, ALLABOUN H, et al. CO2 supercritical fluid extraction of Jordanian oil shale utilizing different co-solvents[J]. Fuel Processing Technology, 2011, 92(10): 2016-2023.
doi: 10.1016/j.fuproc.2011.06.001
|
[18] |
KOEL M, LJOVIN S, BONDAR Y. Supercritical carbon dioxide extraction of Estonian oil shale[J]. Oil Shale, 2000, 17(3): 225-232.
doi: 10.3176/oil.2000.3.03
|
[19] |
李斌会, 邓森, 刘勇, 等. 松辽盆地古龙页岩油储层可动流体饱和度测定方法[J]. 大庆石油地质与开发, 2022, 41(3): 130-138.
|
|
LI Binhui, DENG Sen, LIU Yong, et al. Measurement method of movable fluid saturation of Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 130-138.
|
[20] |
王子强, 葛洪魁, 郭慧英, 等. 准噶尔盆地吉木萨尔页岩油不同温压CO2吞吐下可动性实验研究[J]. 石油实验地质, 2022, 44(6): 1092-1099.
|
|
WANG Ziqiang, GE Hongkui, GUO Huiying, et al. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. Petroleum Geology & Experiment, 2022, 44(6): 1092-1099.
|
[21] |
卢振东, 刘成林, 曾晓祥, 等. 页岩油资源规模分布模型及敏感性研究[J]. 石油实验地质, 2022, 44(4): 730-738.
|
|
LU Zhendong, LIU Chenglin, ZENG Xiaoxiang, et al. Shale oil size distribution models and their sensitivities[J]. Petroleum Geology & Experiment, 2022, 44(4): 730-738.
|
[22] |
吴其荣, 陶建国, 范宝成, 等. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析[J]. 热力发电, 2022, 51(10): 28-34.
|
|
WU Qirong, TAO Jianguo, FAN Baocheng, et al. Technical route selection and economic sensitivity analysis of large-scale carbon capture in coal-fired power plant[J]. Thermal Power Generation, 2022, 51(10): 28-34.
|
[23] |
刘牧心, 梁希, 林千果. 碳中和背景下中国碳捕集、利用与封存项目经济效益和风险评估研究[J]. 热力发电, 2021, 50(9): 18-26.
|
|
LIU Muxin, LIANG Xi, LIN Qianguo. Economic analysis and risk assessment for carbon capture, utilization and storage project under the background of carbon neutrality in China[J]. Thermal Power Generation, 2021, 50(9): 18-26.
|
[24] |
SAIDIAN M, PRASAD M. Effect of mineralogy on nuclear magnetic reso-nance surface relaxivity: A case study of Middle Bakken and Three Forks formations[J]. Fuel, 2015, 161: 197-206.
doi: 10.1016/j.fuel.2015.08.014
|
[25] |
赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40(6): 1333-1338.
|
|
ZHAO Qingmin, LUN Zengmin, ZHANG Xiaoqing, et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40(6): 1333-1338.
|
[26] |
肖文联, 杨玉斌, 黄矗, 等. 基于核磁共振技术的页岩油润湿性及其对原油动用特征的影响[J]. 油气地质与采收率, 2023, 30(1): 112-121.
|
|
XIAO Wenlian, YANG Yubin, HUANG Chu, et al. Rock wettability and its influence on crude oil producing characteristics based on NMR technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 112-121.
|
[27] |
李一波, 蔺祥, 彭瑀, 等. 热处理作用下页岩储层改造机理及提高采收率技术研究进展[J]. 油气地质与采收率, 2022, 29(4):101-108.
|
|
LI Yibo, LIN Xiang, PENG Yu, et al. Research progress of shale reservoir stimulation mechanism and enhanced oil recovery technology under heat treatment[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 101-108.
|
[28] |
王香增, 杨红, 王伟, 等. 延长油田低渗透油藏提高采收率技术进展[J]. 油气地质与采收率, 2022, 29(4): 69-75.
|
|
WANG Xiangzeng, YANG Hong, WANG Wei, et al. Technical advancements in enhanced oil recovery in low permeability reservoirs of Yanchang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 69-75.
|
[29] |
吴晓峰, 盛家平, 熊晓菲. 吉木萨尔页岩油藏注气吞吐泡沫防窜实验研究[J]. 油气地质与采收率, 2022, 29(4):109-115.
|
|
WU Xiaofeng, SHENG Jiaping, XIONG Xiaofei. Experimental study on foam anti-channeling during huff-n-puff gas injection in Jimsar shale oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 109-115.
|