油气藏评价与开发 ›› 2026, Vol. 16 ›› Issue (1): 34-42.doi: 10.13809/j.cnki.cn32-1825/te.2025249

• 方法理论 • 上一篇    下一篇

深层低渗透油藏CO2混相前缘运移特征及微观动用机理研究

毕永斌1,2(), 马晓丽2, 钟会影1(), 蒋明洁2, 顾潇2, 陈少勇2   

  1. 1.东北石油大学提高油气采收率教育部重点实验室,黑龙江 大庆 163318
    2.中国石油冀东油田公司,河北 唐山 063004
  • 收稿日期:2025-05-26 发布日期:2026-01-06 出版日期:2026-01-26
  • 通讯作者: 钟会影(1981—),女,博士,教授,主要从事孔隙级微观渗流理论与应用及油藏数值模拟研究。地址:黑龙江省大庆市高新技术产业开发区学府街99号东北石油大学石油工程学院,邮政编码:163318。E-mail:zhhy987@126.com
  • 作者简介:毕永斌(1981—),男,硕士,高级工程师,现从事油田开发研究工作。地址:河北省唐山市路北区51号甲区冀东油田第一科研大楼,邮政编码:063004。E-mail:byb5800@163.com
  • 基金资助:
    国家自然科学基金面上项目“低渗透油藏二氧化碳驱三相渗流表征及演化机制”(5247044028)

Research on migration characteristics of CO2 miscible fronts and microscopic mobilization mechanisms in deep low-permeability oil reservoirs

BI Yongbin1,2(), MA Xiaoli2, ZHONG Huiying1(), JIANG Mingjie2, GU Xiao2, CHEN Shaoyong2   

  1. 1.Key Laboratory for Enhanced Oil & Gas Recovery of Ministry of Education, Northeast Petroleum University, Daqing, Heilongjiang 163318, China
    2.PetroChina Jidong Oilfield Company, Tangshan, Hebei 063004, China
  • Received:2025-05-26 Online:2026-01-06 Published:2026-01-26

摘要:

深层低渗透油藏经衰竭式开采与注水开发后,地下仍滞留约60%的原油储量,成为制约油气资源高效利用的关键难题。CO2混相驱油技术作为提升采收率的高效手段,近年来备受关注,但其实际应用中易出现驱替前缘突进现象,导致波及范围不均,严重影响整体驱油效果。研究采用核磁共振(NMR)与CT扫描相结合的技术,选取不同深层渗透率等级的低渗透岩心,系统开展了CO2混相驱前缘运移特征及微观动用机理的实验研究。结果表明:岩心渗透率对CO2混相前缘的稳定性与运移行为影响显著。随着渗透率降低,前缘拟活塞式驱替状态更早被破坏,非均匀推进程度加剧,具体表现为无因次运移距离缩短,岩心中后段驱油效率明显降低。在微观孔隙动用方面,CO2表现出明显的顺序选择性:优先进入大孔隙,随后逐步波及中、小孔隙。随着岩心渗透率升高,中孔喉通道中原油的动用程度显著提升,反映出更优的一致性驱替特征。进一步相关性分析显示,总体驱油效率与前缘无因次运移距离呈正相关,表明前缘稳定性是制约驱油效果的关键因素。研究从宏微观结合的角度揭示了深层低渗透储层中CO2混相前缘的运移规律及孔隙尺度原油动用机制,所得认识对优化注采工艺、改善开发效果具有重要的参考价值,可为深层低渗透油藏CO2驱的高效开发提供理论支撑与技术依据。

关键词: 深层低渗透油藏, CO2混相驱, 前缘运移特征, 微观动用机理, 驱油效率

Abstract:

After being subjected to depletion production and water flooding, deep low-permeability oil reservoirs still retain about 60% of the original oil in place, which has become a major bottleneck restricting the efficient utilization of oil and gas resources. CO2 miscible flooding, as an efficient enhanced oil recovery (EOR) technique, has attracted significant attention in recent years. However, during its practical application, the phenomenon of frontal breakthrough often occurs, leading to an uneven sweep efficiency and significantly reducing the overall oil displacement performance. This study employed nuclear magnetic resonance (NMR) and CT scanning techniques to systematically investigate the migration characteristics and microscopic mobilization mechanisms of CO2 miscible fronts using deep low-permeability core samples with different permeability grades. The results indicated that core permeability significantly influenced the stability and migration behaviors of CO2 miscible fronts. As permeability decreased, the pseudo-piston-like displacement pattern was disrupted earlier, and the degree of non-uniform frontal advancement intensified, specifically manifested as a shorter dimensionless migration distance and a notable decline in oil displacement efficiency in the middle and rear sections of the core. In terms of microscopic pore mobilization, CO2 exhibited distinct sequential selectivity. It preferentially entered large pores, and gradually advanced into medium and small pores. With increasing core permeability, the mobilization of crude oil in medium pore throats significantly improved, reflecting more uniform displacement characteristics. Further correlation analysis showed a positive relationship between overall oil displacement efficiency and the dimensionless migration distance of the front, indicating that front stability was a key factor restricting the performance of oil displacement. This study reveals the migration patterns of CO2 miscible fronts and pore-scale oil mobilization mechanisms in deep low-permeability reservoirs from a combined macro-micro perspective. The findings provide valuable insights for optimizing injection-production strategies and improving development performance, offering theoretical support and technical guidance for the efficient development of deep low-permeability reservoirs using CO2 flooding.

Key words: deep low-permeability reservoir, CO2 miscible flooding, front migration characteristics, microscopic mobilization mechanism, oil displacement efficiency

中图分类号: 

  • TE348