[1] |
胡晓华, 张清秀, 吴建发, 等. 页岩气井压裂液返排影响因素研究[C]// 全国天然气学术年会, 中国宁夏银川, 2016: 1579-1584.
|
|
HU Xiaohua, ZHANG Qingxiu, WU Jianfa, et al. Influential factors study of flow back of shale gas horizontal wells[C]// Institute of Petroleum and Gas Professional Committee of China, Sichuan Petroleum Institute. 2016 National Natural Gas Academic Annual Conference, Yinchuan, 2016: 1579-1584.
|
[2] |
卢拥军, 王海燕, 管保山, 等. 海相页岩压裂液低返排率成因[J]. 天然气工业, 2017, 37(7): 46-51.
|
|
LU Yongjun, WANG Haiyan, GUAN Baoshan, et al. Reasons for the low flowback rates of fracturing fluids in marine shale[J]. Natural Gas Industry, 2017, 37(7): 46-51.
|
[3] |
樊欣欣, 任晓娟. 致密气藏压裂液伤害特征及实验影响因素分析[J]. 石油化工应用, 2017, 36(4): 24-27.
|
|
FAN Xinxin, REN Xiaojuan. Damage characteristics of fracturing fluid in tight gas reservoir and analysis of experimental factors[J]. Petrochemical Industry Application, 2017, 36(4): 24-27.
|
[4] |
游利军, 王飞, 康毅力, 等. 页岩气藏水相损害评价与尺度性[J]. 天然气地球科学, 2016, 27(11): 2023-2029.
|
|
YOU Lijun, WANG Fei, KANG Yili, et al. Evaluation and scale effect of aqeous phase damage in shale gas reservoir[J]. Natural Gas Geoscience, 2016, 27(11): 2023-2029.
|
[5] |
司志梅, 李爱芬, 郭海萱, 等. 致密油藏压裂液滤液返排率影响因素室内实验[J]. 油气地质与采收率, 2017, 24(1): 122-126.
|
|
SI Zhimei, LI Aifen, GUO Haixuan, et al. Experimental study on the influencing factors of fracturing fluid flowback rate in tight reservoir[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 122-126.
|
[6] |
GE H K, YANG L, SHEN Y H, et al. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids[J]. Petroleum Science, 2015, 12(4): 636-650.
doi: 10.1007/s12182-015-0049-2
|
[7] |
HUN L, BING Y, SONG X X, et al. Fracturing fluid retention in shale gas reservoir from the perspective of pore size based on nuclear magnetic resonance[J]. Journal of Hydrology, 2021, 601: 126590.
doi: 10.1016/j.jhydrol.2021.126590
|
[8] |
ZHANG Y, LI Z P, LAI F P, et al. Experimental investigation into the effects of fracturing fluid-shale interaction on pore structure and wettability[J]. Geofluids, 2021, 2021: 6637955.
|
[9] |
张磊, 康钦军, 姚军, 等. 页岩压裂中压裂液返排率低的孔隙尺度模拟与解释[J]. 科学通报, 2014, 59(32): 3197-3203.
|
|
ZHANG Lei, KANG Qinjun, YAO Jun, et al. The explanation of low recovery of fracturing fluid in shale hydraulic fracturing by pore-scale simulation[J]. Chinese Science Bulletin, 2014, 59(32): 3197-3203.
|
[10] |
SONG W H, LIU L J, WANG D Y, et al. Nanoscale confined multicomponent hydrocarbon thermodynamic phase behavior and multiphase transport ability in nanoporous material[J]. Chemical Engineering Journal, 2020, 382: 122974.
doi: 10.1016/j.cej.2019.122974
|
[11] |
YAO J, SONG W H, WANG D Y, et al. Multi-scale pore network modelling of fluid mass transfer in nano-micro porous media[J]. International Journal of Heat and Mass Transfer, 2019, 141: 156-167.
doi: 10.1016/j.ijheatmasstransfer.2019.06.077
|
[12] |
SONG W H, YIN Y, LANDRY C J, et al. A local-effective-viscosity multi-relaxation-time lattice Boltzmann-pore network coupling model to predict gas transport property in complex nanoporous media[J]. SPE Journal, 2020, 26(1): 461-481.
doi: 10.2118/203841-PA
|
[13] |
ISRAELACHVILI J N. Intermolecular and surface forces[M]. 3rd ed. Waltham: Academic Press, 2011.
|
[14] |
BERG J C. An introduction to interfaces & colloids: The bridge to nanoscience[M]. Singapore: World Scientific, 2010.
|
[15] |
HEATH J E, BRYAN C R, MATTEO E N, et al. Adsorption and capillary condensation in porous media as a function of the chemical potential of water in carbon dioxide[J]. Water Resources Research, 2014, 50(3): 2718-2731.
doi: 10.1002/wrcr.v50.3
|
[16] |
TOKUNAGA T K. DLVO-based estimates of adsorbed water film thicknesses in geologic CO2 reservoirs[J]. Langmuir, 2012, 28(21): 8001-8009.
doi: 10.1021/la2044587
|
[17] |
BASHKATOV A N, GENINA E A. Water refractive index in dependence on temperature and wavelength: A simple approximation[A]. Proceedings of the Saratov Fall Meeting 2002: Optical Technologies in Biophysics and Medicine IV[C]. International Society for Optics and Photonics, 2003: 393-395.
|
[18] |
GREGORY J. Interaction of unequal double layers at constant charge[J]. Journal of Colloid and Interface Science, 1975, 51(1): 44-51.
doi: 10.1016/0021-9797(75)90081-8
|
[19] |
CHURAEV N, DERJAGUIN B. Inclusion of structural forces in the theory of stability of colloids and films[J]. Journal of Colloid and Interface Science, 1985, 103(2): 542-553.
doi: 10.1016/0021-9797(85)90129-8
|
[20] |
VALVATNE P H, BLUNT M J. Predictive pore-scale modeling of two-phase flow in mixed wet media[J]. Water Resources Research, 2004, 40(7): W07406.
|
[21] |
PRODANOVIĆ M, BRYANT S L. A level set method for determining critical curvatures for drainage and imbibition[J]. Journal of Colloid and Interface Science, 2006, 304(2): 442-458.
pmid: 17027812
|
[22] |
OSHER S, FEDKIW R P. Level set methods and dynamic implicit surfaces[M]. New York: Springer New York, 2005.
|
[23] |
PENG D P, MERRIMAN B, OSHER S, et al. A PDE-based fast local level set method[J]. Journal of Computational Physics, 1999, 155(2): 410-438.
doi: 10.1006/jcph.1999.6345
|