[1] |
张金川, 徐波, 聂海宽, 等. 中国页岩气资源勘探潜力[J]. 天然气工业, 2008, 28(6): 136-140.
|
|
ZHANG Jinchuan, XU Bo, NIE Haikuan, et al. Exploration potential of shale gas resources in China[J]. Natural Gas Industry, 2008, 28(6): 136-140.
|
[2] |
刘伟新, 卢龙飞, 叶德燎, 等. 川东南地区奥陶系五峰组—志留系龙马溪组页岩气异常压力封存箱剖析与形成机制[J]. 石油实验地质, 2022, 44(5): 804-814.
|
|
LIU Weixin, LU Longfei, YE Deliao, et al. Significance and Formation mechanism of abnormally pressured compartments of shale gas in the Ordovician Wufeng-Silurian Longmaxi formations, southeastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 804-814.
|
[3] |
胡凯. 川西南威远地区五峰—龙马溪组页岩储层特征及甜点分布规律研究[J]. 非常规油气, 2021, 8(5): 34-44.
|
|
HU Kai. Reservoir and sweet pot distribution characteristics of shale gas in Wufeng-Longmaxi Formation, southwest of Sichuan Basin[J]. Unconventional Oil & Gas, 2021, 8(5): 34-44.
|
[4] |
CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11): 1921-1938.
|
[5] |
LIU Y, LIU S M, ZHANG R, et al. The molecular model of Marcellus shale kerogen: Experimental characterization and structure reconstruction[J]. International Journal of Coal Geology, 2021, 246: 1-18.
|
[6] |
王擎, 程枫, 潘朔. 油页岩干酪根化学键浓度与能量密度研究[J]. 燃料化学学报, 2017, 45(10): 1209-1218.
|
|
WANG Qing, CHENG Feng, PAN Shuo. Chemical bond concentration and energy density of oil shale kerogen[J]. Journal of Fuel Chemistry and Technology, 2017, 45(10): 1209-1218.
|
[7] |
黄亮. 基于分子模拟的页岩气多组分竞争吸附机理研究[D]. 北京: 中国石油大学(北京), 2020.
|
|
HUANG Liang. Molecular simulation study on competitive adsorption mechanism of multi-components in shale gas reservoir[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[8] |
WANG X Y, HAN X X, YOU Y L, et al. Molecular characterization of Dachengzi oil shale kerogen by multidimensional solid-state nuclear magnetic resonance spectroscopy[J]. Fuel, 2021, 303(6): 1-9.
|
[9] |
CHAREONSUPPANIMIT P, MOHAMMAD S A, ROBINSON R L, et al. High-pressure adsorption of gases on shales: Measurements and modeling[J]. International Journal of Coal Geology, 2012, 95: 34-46.
doi: 10.1016/j.coal.2012.02.005
|
[10] |
闫建萍, 张同伟, 李艳芳, 等. 页岩有机质特征对甲烷吸附的影响[J]. 煤炭学报, 2013, 38(5): 805-811.
|
|
YAN Jianping, ZHANG Tongwei, LI Yanfang, et al. Effect of the organic matter characteristics on methane adsorption in shale[J]. Journal of China Coal Society, 2013, 38(5): 805-811.
|
[11] |
RAJPUT V, ERTEKIN T. Thermodynamically-consistent modeling of adsorption in liquid-rich shales[C]// Paper SPE-169589-MS presented at the SPE Western North American and Rocky Mountain Joint Meeting, Denver, Colorado, USA, April 2014.
|
[12] |
翟常博, 邓模, 曹清古, 等. 川东地区上二叠统龙潭组泥页岩基本特征及页岩气勘探潜力[J]. 石油实验地质, 2021, 43(6): 921-932.
|
|
ZHAI Changbo, DENG Mo, CAO Qinggu, et al. Basic characteristics and exploration potential of shale gas in Longtan Formation of Upper Permian in eastern Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(6): 921-932.
|
[13] |
李腾飞, 田辉, 肖贤明, 等. 样品粒径对高过成熟度页岩低压气体吸附实验结果的影响[J]. 天然气地球科学, 2020, 31(9): 1271-1284.
|
|
LI Tengfei, TIAN Hui, XIAO Xianming, et al. The effect of particle size on low pressure gas adsorption experiments for high-maturity shale[J]. Natural Gas Geoscience, 2020, 31(9): 1271-1284.
|
[14] |
CHEN L, LIU K Y, JIANG S, et al. Effect of adsorbed phase density on the correction of methane excess adsorption to absolute adsorption in shale[J]. Chemical Engineering Journal, 2020, 420: 1-13.
|
[15] |
KATTI D, THAPA K, KATTI K S. Modeling molecular interactions of sodium montmorillonite clay with 3D kerogen models[J]. Fuel, 2017, 199: 641-652.
doi: 10.1016/j.fuel.2017.03.021
|
[16] |
许晨曦, 薛海涛, 李波宏, 等. 页岩气在矿物孔隙中的微观吸附机理差异性研究[J]. 特种油气藏, 2020, 27(4): 79-84.
doi: 10.3969/j.issn.1006-6535.2020.04.012
|
|
XU Chenxi, XUE Haitao, LI Bohong, et al. Microscopic adsorption mechanism difference in the mineral pore of shale gas reservoir[J]. Special Oil & Gas Reservoir, 2020, 27(4): 79-84.
doi: 10.3969/j.issn.1006-6535.2020.04.012
|
[17] |
任俊豪, 任晓海, 宋海强, 等. 基于分子模拟的纳米孔内甲烷吸附与扩散特征[J]. 石油学报, 2020, 41(11): 1366-1375.
doi: 10.7623/syxb202011006
|
|
REN Junhao, REN Xiaohai, SONG Haiqiang, et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020, 41(11): 1366-1375.
doi: 10.7623/syxb202011006
|
[18] |
BABATUNDE K A, BEGASH B, MOJID M R, et al. Molecular simulation study of CO2/CH4 adsorption on realistic heterogeneous shale surfaces[J]. Applied Surface Science, 2021, 543(3): 1-11.
|
[19] |
石钰, 杨晓娜, 李树刚, 等. 含水量对干酪根中多组分气体吸附和扩散的影响: 分子模拟研究[J]. 西安石油大学学报(自然科学版), 2021, 36(4): 50-57.
|
|
SHI Yu, YANG Xiaona, LI Shugang, et al. Effect of moisture on adsorption and diffusion of multi-component gas in kerogen: A molecular simulation study[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2021, 36(4): 50-57.
|
[20] |
石油地质勘探专业标准化委员会. 沉积岩中干酪根分离方法: GB/T 19144—2010[S]. 北京: 中国标准出版社, 2010: 1-3.
|
|
Professional Standardization Committee of Petroleum Geology Exploration. Isolation method for kerogen from sedimentary rock: GB/T 19144—2010[S]. Beijing: Standards Press of China, 2010: 1-3.
|
[21] |
国家能源局. 透射光—荧光干酪根显微组分鉴定及类型划分方法: SY/T 5125-2014[S]. 北京: 石油工业出版社, 2014.
|
|
National Energy Administration.Method of identification microscopically the maceral of kerogen and indivision the kerogen type by transmitted-light and fluorescence: SY/T 5125—2014[S]. Beijing: Petroleum Industry Press, 2014.
|
[22] |
JACOB H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”)[J]. International Journal of Coal Geology, 1989, 11(1): 65-79.
doi: 10.1016/0166-5162(89)90113-4
|
[23] |
谢国梁, 刘树根, 焦堃, 等. 受显微组分控制的深层页岩有机质孔隙: 四川盆地五峰组—龙马溪组有机质组分分类及其孔隙结构特征[J]. 天然气工业, 2021, 41(9): 23-34.
|
|
XIE Guoliang, LIU Shugen, JIAO Kun, et al. Organic pores in deep shale controlled by macerals: Classification and pore characteristics of organic matter components in Wufeng Formation-Longmaxi Formation of the Sichuan Basin[J]. Natural Gas Industry, 2021, 41(9): 23-34.
|
[24] |
王笑奇. 长宁地区五峰—龙马溪组页岩气成藏过程及富集机制研究[D]. 徐州: 中国矿业大学, 2021.
|
|
WANG Xiaoqi. Study on shale gas accumulation process and enrichment mechanism of Wufeng-Longmaxi Formation in Changning area[D]. Xuzhou: China University of Mining and Technology, 2021.
|
[25] |
吴小奇, 周小进, 陈迎宾, 等. 四川盆地川西坳陷上三叠统须家河组烃源岩分子地球化学特征[J]. 石油实验地质, 2022, 44(5): 854-865.
|
|
WU Xiaoqi, ZHOU Xiaojin, CHEN Yingbin, et al. Molecular characteristics of source rocks in Upper Triassic Xujiahe Formation, western Sichuan Depression, Sichuan Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 854-865.
|
[26] |
邹雨, 王国建, 卢丽, 等. 纳米孔隙中页岩气扩散模拟实验和数学模型分析[J]. 石油实验地质, 2021, 43(5): 844-854.
|
|
ZOU Yu, WANG Guojian, LU Li, et al. Simulation experiment and mathematical model analysis for shale gas diffusion in nano-scale pores[J]. Petroleum Geology & Experiment, 2021, 43(5): 844-854.
|
[27] |
李鹏飞. 基于分子模拟研究深部煤储层孔隙结构和吸附特征——以大宁—吉县地区煤层为例[D]. 太原: 太原理工大学, 2019.
|
|
LI Pengfei. Pore structural characterization and adsorption properties of deep coal reservoir based on molecular simulation: A case study from Daning-Jixian District coalbed[D]. Taiyuan: Taiyuan University of Technology, 2019.
|
[28] |
鲁中灯, 刘岩, 陈祖林, 等. 烃源岩抽提物中藿烷分子碳同位素分析新方法及指示意义[J]. 石油实验地质, 2022, 44(2): 288-294.
|
|
LU Zhongdeng, LIU Yan, CHEN Zulin, et al. An improved method and indications for the compound specific isotopic analysis of hopanes in source rock extracts[J]. Petroleum Geology & Experiment, 2022, 44(2): 288-294.
|
[29] |
陈彦鄂, 张志荣, GREENWOOD Paul. 油气包裹体分子组成的热释—色谱—质谱分析[J]. 石油实验地质, 2021, 43(5): 915-920.
|
|
CHEN Yan'e, ZHANG Zhirong, GREENWOOD Paul. Pyrolysis-gas chromatography-mass spectrometry analyses of oil-bearing fluid inclusions composition[J]. Petroleum Geology & Experiment, 2021, 43(5): 915-920.
|