油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (5): 657-667.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.013
收稿日期:
2022-08-08
出版日期:
2023-10-26
发布日期:
2023-11-01
通讯作者:
刘向君(1969—),女,博士,教授,博士生导师,从事岩石力学力学与井壁稳定方面研究。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: 作者简介:
张家伟(1995—),男,在读硕士研究生,从事岩石力学方面与井壁稳定研究。地址:四川省成都市新都区新都大道8号西南石油大学,邮政编码:610500。E-mail: 基金资助:
ZHANG Jiawei(),LIU Xiangjun(),XIONG Jian,LIANG Lixi,REN Jianfei,LIU Baiqu
Received:
2022-08-08
Online:
2023-10-26
Published:
2023-11-01
摘要:
针对不同条件下的双井同步水力压裂裂缝扩展及演化规律尚不明确,裂缝之间的相互作用会引起裂缝重新定向,影响水力压裂效果等问题。通过离散元法,研究不同因素影响下裂缝扩展规律及破坏模式。结果表明:当井间连线与最大主应力夹角θ为0°时,在水平应力差的影响下井壁周围应力分为2个阶段:裂缝相交前稳定阶段以及裂缝相交后急剧上升阶段。随着水平主应力差减小,破坏模式由单一裂缝转变为多裂缝破坏。当θ不为0°时,由于地层的地应力场发生改变,进而引起裂缝偏转,形成连通两井的倾斜裂缝。在压裂过程中裂缝的扩展对周围区域施加较大的应力,而局部应力状态大小和方向的改变都因主裂缝的扩展而改变,使裂缝偏离最大主应力方向扩展。
中图分类号:
张家伟, 刘向君, 熊健, 梁利喜, 任建飞, 刘佰衢. 双井同步压裂裂缝扩展规律离散元模拟[J]. 油气藏评价与开发, 2023, 13(5): 657-667.
ZHANG Jiawei, LIU Xiangjun, XIONG Jian, LIANG Lixi, REN Jianfei, LIU Baiqu. Discrete element simulation study on fracture propagation law of dual well synchronous fracturing[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 657-667.
[1] |
邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望-以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173-187.
doi: 10.7623/syxb201202001 |
ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: Taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173-187.
doi: 10.7623/syxb201202001 |
|
[2] | 张宏学, 刘卫群. 页岩气开采的相关实验、模型和环境效应[J]. 岩土力学, 2014, 35(S2): 85-100. |
ZHANG Hongxue, LIU Weiqun. Relevant experiments, models and environmental effect of shale gas production[J]. Rock and Soil Mechanics, 2014, 35(S2):85-100. | |
[3] | 张金川, 陶佳, 李中明, 等. 中国页岩剖面区域分布及其页岩气地质意义[J]. 油气藏评价与开发, 2022, 12(1): 29-46. |
ZHANG Jinchuan, TAO Jia, LI Zhongming, et al. Regional distribution of field shale outcrop in China and its shale gas significance[J]. Reservoir Evaluation and Development, 2022, 12(1): 29-46. | |
[4] | 易同生, 陈捷. 黔西石炭系页岩气赋存特征与勘探潜力[J]. 油气藏评价与开发, 2022, 12(1): 82-94. |
YI Tongsheng, CHEN Jie. Occurrence characteristics and exploration potential of Carboniferous shale gas in western Guizhou[J]. Reservoir Evaluation and Development, 2022, 12(1): 82-94. | |
[5] | 曾义金, 杨春和, 张保平. 页岩气开发工程中的理论与实践[M]. 北京: 科学出版社, 2017. |
ZENG Yijin, YANG Chunhe, ZHANG Baoping. The theory and practice in shale gas development engineering[M]. Beijing: Science Press, 2017. | |
[6] | 张磊磊, 陆正元, 王军, 等. 渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J]. 石油与天然气地质, 2016, 37(1): 80-86. |
ZHANG Leilei, LU Zhengyuan, WANG Jun, et al. Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2016, 37(1): 80-86. | |
[7] | 兰俊. 海陆过渡相煤系页岩气成藏条件及储层特征[J]. 石油地质与工程, 2021, 35(5): 27-32. |
LAN Jun. Reservoir forming conditions and reservoir characteristics of coal measure shale gas in marine continental transitional facies[J]. Petroleum Geology & Engineering, 2021, 35(5): 27-32. | |
[8] | 唐颖, 张金川, 张琴, 等. 页岩气井水力压裂技术及其应用分析[J]. 天然气工业, 2010, 30(10): 33-38. |
TANG Ying, ZHANG Jinchuan, ZHANG Qin, et al. An analysis of hydraulic fracturing technology in shale gas wells and its application[J]. Natural Gas Industry, 2010, 30(10): 33-38. | |
[9] | 曾慧勇, 陈立峰, 陈亚东, 等. 压裂-驱油一体化工作液研究进展[J]. 油气地质与采收率, 2022, 29(3): 162-170. |
ZENG Huiyong, CHEN Lifeng, CHEN Yadong, et al. Research progress on fracturing-oil displacement integrated working fluid[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(3): 162-170. | |
[10] | 刘子军. 基于Pearson 相关系数的低渗透砂岩油藏重复压裂井优选方法[J]. 油气地质与采收率, 2022, 29(2): 140-144. |
LIU Zijun. Method for selecting repeated fracturing wells in low-permeability sandstone reservoirs based on Pearson correlation coefficient[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(2): 140-144. | |
[11] | 崔青. 美国页岩气压裂增产技术[J]. 石油化工应用, 2010, 29(10): 1-3. |
CUI Qing. Fracture-stimulation technology of American shale gas[J]. Petrochemical Industry Application, 2010, 29(10): 1-3. | |
[12] |
CHEN X Y, LI Y M, ZHAO J Z, et al. Numerical investigation for simultaneous growth of hydraulic fractures in multiple horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2017, 51: 44-52.
doi: 10.1016/j.jngse.2017.12.014 |
[13] | DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers & Geotechnics, 2016, 71: 283-294. |
[14] | 杨喜萍, 胡景宏, 付亮, 等. 致密砂岩气藏射孔完井裂缝起裂压力研究[J]. 石油地质与工程, 2022, 36(6): 92-99. |
YANG Xiping, HU Jinghong, FU Liang, et al. Fracture initiation pressure of perforation completion in tight sandstone gas reservoir[J]. Petroleum Geology & Engineering, 2022, 36(6): 92-99. | |
[15] |
LIU X Q, RASOULI V, GUO T K, et al. Numerical simulation of stress shadow in multiple cluster hydraulic fracturing in horizontal wells based on lattice modelling[J]. Engineering Fracture Mechanics, 2020, 238: 107278.
doi: 10.1016/j.engfracmech.2020.107278 |
[16] |
MANRIQUEZ A L. Stress behavior in the near fracture region between adjacent horizontal wells during multistage fracturing using a coupled stress-displacement to hydraulic diffusivity model[J]. Journal of Petroleum Science and Engineering, 2018, 162: 822-834.
doi: 10.1016/j.petrol.2017.11.009 |
[17] | SHAN Q L, ZHANG R X, JIANG Y J. Complexity and tortuosity hydraulic fracture morphology due to near-wellbore nonplanar propagation from perforated horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2021, 89(1). |
[18] |
LI XIANG, FENG Z J, HAN G, et al. Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2016, 2(2): 63-76.
doi: 10.1007/s40948-016-0022-6 |
[19] |
XUE J Q, LI N Y, LU X B. Productivity model for gas reservoirs with open-hole multi-fracturing horizontal wells and optimization of hydraulic fracture parameters[J]. Petroleum, 2017, 3(4): 454-460.
doi: 10.1016/j.petlm.2017.04.001 |
[20] |
WU Y, HUANG Z, ZHAO K, et al. Unsteady seepage solutions for hydraulic fracturing around vertical wellbores in hydrocarbon reservoirs[J]. International Journal of Hydrogen Energy, 2020, 45(16): 9496-9503.
doi: 10.1016/j.ijhydene.2020.01.222 |
[21] | BRUNO M S, NAKAGAWA F M. Bore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics and Mining Sciences and, 1991, 28(4): 261-273. |
[22] | CUNDALL P A. A discontinuous future for numerical modelling in geomechanics?[J]. Geotechnical Engineering, 2001, 149(1): 41-47. |
[23] |
DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294.
doi: 10.1016/j.compgeo.2015.06.007 |
[24] | DUAN K, LI Y C, YANG W D. Discrete element method simulation of the growth and efficiency of multiple hydraulic fractures simultaneously-induced from two horizontal wells[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7. |
[25] |
KWOK C Y, DUAN K, PIERCE M. Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method[J]. Acta Geotechnica, 2020, 15(1): 245.
doi: 10.1007/s11440-019-00858-y |
[26] | 李静, 孔祥超, 宋明水, 等. 储层岩石微观孔隙结构对岩石力学特性及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156. |
LI Jing, KONG Xiangchao, SONG Mingshui, et al. Study on the influence of reservoir rock micro-pore structure on rock mechanical properties and crack propagation[J]. Rock and Soil Mechanics, 2019, 40(11): 4149-4156. | |
[27] | AL-BUSAIDI A, HAZZARD J F, YOUNG R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite[J]. Journal Geophysical Research-Oceans, 2005, 110: B06302. |
[28] |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
doi: 10.1680/geot.1979.29.1.47 |
[29] | 刘鹏. 砂砾岩水压致裂机理的实验与数值模拟研究[D]. 北京: 中国矿业大学(北京), 2017. |
LIU Peng. Experimental and numerical simulating studies on hydrofracturing mechanism of glutenite[D]. Beijing: China University of Mining and Technology(Beijing), 2017. | |
[30] | SNEDDON I N. The distribution of stress in the neighbourhood of a crack in an elastic solid[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1946, 187(1009): 229-260. |
[1] | 李小刚, 何建冈, 杨兆中, 易良平, 黄刘科, 杜博迪, 张景强. 基于离散元法的压裂裂缝特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 348-357. |
[2] | 候梦如,梁冰,孙维吉,刘奇,赵航. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究 [J]. 油气藏评价与开发, 2023, 13(1): 100-107. |
[3] | 陈劭颖,王伟,杨清纯,张立松. 干热岩储层多簇缝网压裂热流固顺序耦合模型研究 [J]. 油气藏评价与开发, 2022, 12(6): 869-876. |
[4] | 石军太,李文斌,张龙龙,季长江,李国富,张遂安. 压裂过程数据对原始煤储层压力反演方法研究 [J]. 油气藏评价与开发, 2022, 12(4): 564-571. |
[5] | 易良平,张丹,杨若愚,肖佳林,李小刚,杨兆中. 基于相场法的裂缝性地层压裂裂缝延伸特征研究 [J]. 油气藏评价与开发, 2022, 12(4): 604-616. |
[6] | 杨兆中,袁健峰,朱静怡,李小刚,李扬,王浩. 煤层气注热增产研究进展 [J]. 油气藏评价与开发, 2022, 12(4): 617-625. |
[7] | 周鑫,刘向君,丁乙,梁利喜,刘叶轩. 考虑隔层效应的水力裂缝与天然裂缝相交模拟 [J]. 油气藏评价与开发, 2022, 12(3): 515-525. |
[8] | 唐波涛,曾冀,陈伟华,陈一鑫,王涛,刘成,冯逢. 川中秋林地区致密砂岩水平井多簇射孔优化设计方法及应用效果 [J]. 油气藏评价与开发, 2022, 12(2): 337-344. |
[9] | 蒋廷学,卞晓冰,左罗,沈子齐,刘建坤,吴春方. 非常规油气藏体积压裂全生命周期地质工程一体化技术 [J]. 油气藏评价与开发, 2021, 11(3): 297-304. |
[10] | 张伯虎,周昌满,郑永香,刘建军. 正交节理与应力比值系数对水力裂缝扩展影响规律研究 [J]. 油气藏评价与开发, 2020, 10(5): 55-62. |
[11] | 赵立强,陈一鑫,刘平礼,李年银,罗志锋,杜娟. 一种新型自支撑压裂液体系实验研究 [J]. 油气藏评价与开发, 2020, 10(2): 121-127. |
[12] | 张耀峰,邵祖亮,王涛,伯音. 基于FEMM的径向井压裂裂缝扩展模拟研究 [J]. 油气藏评价与开发, 2020, 10(1): 102-107. |
[13] | 黄小贞,谷红陶. 井中微地震监测技术在平桥南页岩气区块应用效果分析 [J]. 油气藏评价与开发, 2020, 10(1): 43-48. |
[14] | 杨兆中,高晨轩,李小刚,刘觐瑄,廖梓佳. 前置液阶段的支撑剂段塞降低页岩储层压裂摩阻实验研究 [J]. 油气藏评价与开发, 2020, 10(1): 77-83. |
[15] | 翁振,张耀峰,伍轶鸣,范坤,汪芳. 储层溶洞对水力裂缝扩展路径影响的实验研究 [J]. 油气藏评价与开发, 2019, 9(6): 42-46. |
|