油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (1): 42-47.doi: 10.13809/j.cnki.cn32-1825/te.2024.01.006
收稿日期:
2023-01-09
出版日期:
2024-02-26
发布日期:
2024-03-05
作者简介:
张志超(1987—),男,博士研究生,工程师,主要从事CO2地质埋存及驱油相关研究。地址:黑龙江省大庆市龙凤区发展路199号,邮政编码:163318。E-mail:基金资助:
ZHANG Zhichao(),BAI Mingxing,DU Siyu
Received:
2023-01-09
Online:
2024-02-26
Published:
2024-03-05
摘要:
CO2在页岩油藏驱油时的孔隙动用特征是评价其应用于提高页岩油藏采收率效果的一项重要指标。因此,开展了超临界CO2驱替页岩岩心室内实验,并以核磁共振(NMR)在线岩心扫描技术为手段对CO2驱页岩油藏的孔隙动用特征和规律进行研究。结果表明,超临界CO2非混相驱油主要动用页岩中孔隙半径在0.1~3.0 μm范围内的油,而此过程中小于0.008 μm孔隙半径内的油量反而增加,分析原因主要是CO2在页岩层中通过压差和扩散作用将大孔隙内页岩油带入小孔隙中并发生吸附滞留,在驱替时间5 h后,CO2驱替页岩油采收率达到35.7%,驱油效果较好。
中图分类号:
张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究[J]. 油气藏评价与开发, 2024, 14(1): 42-47.
ZHANG Zhichao,BAI Mingxing,DU Siyu. Characteristics of pore dynamics in shale reservoirs by CO2 flooding[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 42-47.
[1] | 方圆, 张万益, 马芬, 成丽芳, 等. 全球页岩油资源分布与开发现状[J]. 矿产保护与利用, 2019, 39(5): 126-134. |
FANG Yuan, ZHANG Wanyi, MA Fen, et al. Research on the global distribution and development status of shale oil[J]. Conservation and Utilization of Mineral, 2019, 39(5): 126-134. | |
[2] | 沈云琦, 金之钧, 苏建政, 等. 中国陆相页岩油储层水平渗透率与垂直渗透率特征——以渤海湾盆地济阳坳陷和江汉盆地潜江凹陷为例[J]. 石油与天然气地质, 2022, 43(2): 378-389. |
SHEN Yunqi, JIN Zhijun, SU Jianzheng, et al. Characteristics of horizontal and vertical permeability of continental shale oil reservoirs in China: A case from Jiyang Depression in Bohai Bay Basin and Qianjiang Sag in Jianghan Basin[J]. Oil & Gas Geology, 2022, 43(2): 378-389. | |
[3] | 周庆凡. 页岩油气资源评价基本问题的讨论[J]. 石油与天然气地质, 2022, 43(1): 26-33. |
ZHOU Qingfan. Discussion on key issues of shale oil/gas resource assessment[J]. Oil & Gas Geology, 2022, 43(1): 26-33. | |
[4] | 刘刚, 杨东, 梅显旺, 等. 松辽盆地古龙页岩油大规模压裂后闷井控排方法[J]. 大庆石油地质与开发, 2020, 39(3): 147-154. |
LIU Gang, YANG Dong, MEI Xianwang, et al. Method of well-soaking and controlled flow back after large-scale fracturing of Gulong shale oil reservoirs in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 147-154. | |
[5] | 尚胜祥. 超临界CO2和助溶剂混相提高页岩油采收率研究[D]. 青岛: 中国石油大学(华东), 2018. |
SHANG Shengxiang. Study on the mixture of supercritical CO2 and cosolvent to improve shale oil recovery[D]. Qingdao: China University of Petroleum(East China), 2018. | |
[6] |
黄兴, 倪军, 李响, 等. 致密油藏不同微观孔隙结构储层CO2驱动用特征及影响因素[J]. 石油学报, 2020, 41(7): 853-864.
doi: 10.7623/syxb202007007 |
HUANG Xing, NI Jun, LI Xiang, et al. Characteristics and influenced factors of CO2 flooding indifferent microscopic pore structures in tight reservoirs[J]. Acta Petrolei Sinica, 2020, 41(7): 853-864.
doi: 10.7623/syxb202007007 |
|
[7] | 肖文联, 任吉田, 王磊飞, 等. 鄂尔多斯盆地西233区长7 页岩油注伴生气原油动用特征实验[J]. 油气地质与采收率, 2022, 29(5): 91-101. |
XIAO Wenlian, REN Jitian, WANG Leifei, et al. Experimental study on oil production characteristics in shale oil from Xi233 area Chang7 reservoir during injecting associated gas[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(5): 91-101. | |
[8] | 黄程, 霍丽如, 吴辰泓. 基于非常规油气开发的CO2资源化利用技术进展及前景[J]. 非常规油气, 2022, (1): 1-9. |
HUANG Cheng, HUO Liru, WU Chenhong. Progress and prospect of CO2 resource utilization technology based on unconventional oil and gas development[J]. Unconventional Oil & Gas, 2022, (1): 1-9. | |
[9] | CLARK A J. Determination of recovery factor in the Bakken Formation, Mountrail County, ND[C]// Paper SPE-133719-STU presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, October 2009. |
[10] | WAN T, SHENG J, WATSON M. Compositional modeling of the diffusion effect on EOR process in fractured shale oil reservoirs by gas flooding[C]// Paper URTEC-1891403-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, Colorado, USA, August 2014. |
[11] | SHENG J J, COOK T, BARNES W, et al. Screening of the EOR potential of a Wolfcamp shale oil reservoir[C]// Paper ARMA-2015-438 presented at the 49th U.S. Rock Mechanics/Geomechanics Symposium, San Francisco, California, June 2015. |
[12] | ALAVIAN S A. Modeling CO2 injection in fractured reservoirs using single matrix block systems[D]. Trondheim: Norwegian University of Science and Technology, 2011. |
[13] |
MEHANA M, KANG Q J, VISWANATHAN H. Molecular-scale considerations of enhanced oil recovery in shale[J]. Energies, 2020, 13(24): 6619.
doi: 10.3390/en13246619 |
[14] | 王强, 李志明, 钱门辉, 等. 超临界二氧化碳萃取泥页岩中可动油实验研究[J]. 石油实验地质, 2020, 42(4): 646-652. |
WANG Qiang, LI Zhiming, QIAN Menhui, et al. Movable oil extraction from shale with supercritical carbon dioxide[J]. Petroleum Geology & Experiment, 2020, 42(4): 646-652. | |
[15] | 张鑫璐. 富有机质泥页岩超临界CO2萃取产物组分与滞留油赋存状态[D]. 北京: 中国石油大学(北京), 2018. |
ZHANG Xinlu. The compositions of supercritical CO2 extraction products and the occurrence state of retained oil in organic-rich shales[D]. Beijing: China University of Petroleum(Beijing), 2018. | |
[16] | 桂文宇, 宫厚健, 吕威, 等. 醇类助剂降低CO2与页岩油最小混相压力实验研究[C]// 2020油气田勘探与开发国际会议论文集, 西安: 西安石油大学, 2020: 7. |
GUI Wenyu, GONG Houjian, LYU Wei, et al. Experimental study on reduction of CO2 and minimum miscible pressure of shale oil by alcohol additives[C]// Proceedings of the 2020 International Conference on Oil and Gas Field Exploration and Development, Xi’an, Xi’an Shiyou University, 2020: 7. | |
[17] |
ALLAWZI M, AL-OTOOM A, ALLABOUN H, et al. CO2 supercritical fluid extraction of Jordanian oil shale utilizing different co-solvents[J]. Fuel Processing Technology, 2011, 92(10): 2016-2023.
doi: 10.1016/j.fuproc.2011.06.001 |
[18] |
KOEL M, LJOVIN S, BONDAR Y. Supercritical carbon dioxide extraction of Estonian oil shale[J]. Oil Shale, 2000, 17(3): 225-232.
doi: 10.3176/oil.2000.3.03 |
[19] | 李斌会, 邓森, 刘勇, 等. 松辽盆地古龙页岩油储层可动流体饱和度测定方法[J]. 大庆石油地质与开发, 2022, 41(3): 130-138. |
LI Binhui, DENG Sen, LIU Yong, et al. Measurement method of movable fluid saturation of Gulong shale oil reservoir in Songliao Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(3): 130-138. | |
[20] | 王子强, 葛洪魁, 郭慧英, 等. 准噶尔盆地吉木萨尔页岩油不同温压CO2吞吐下可动性实验研究[J]. 石油实验地质, 2022, 44(6): 1092-1099. |
WANG Ziqiang, GE Hongkui, GUO Huiying, et al. Experimental study on the mobility of Junggar Basin's Jimsar shale oil by CO2 huff and puff under different temperatures and pressures[J]. Petroleum Geology & Experiment, 2022, 44(6): 1092-1099. | |
[21] | 卢振东, 刘成林, 曾晓祥, 等. 页岩油资源规模分布模型及敏感性研究[J]. 石油实验地质, 2022, 44(4): 730-738. |
LU Zhendong, LIU Chenglin, ZENG Xiaoxiang, et al. Shale oil size distribution models and their sensitivities[J]. Petroleum Geology & Experiment, 2022, 44(4): 730-738. | |
[22] | 吴其荣, 陶建国, 范宝成, 等. 燃煤电厂开展大规模碳捕集的技术路线选择及经济敏感性分析[J]. 热力发电, 2022, 51(10): 28-34. |
WU Qirong, TAO Jianguo, FAN Baocheng, et al. Technical route selection and economic sensitivity analysis of large-scale carbon capture in coal-fired power plant[J]. Thermal Power Generation, 2022, 51(10): 28-34. | |
[23] | 刘牧心, 梁希, 林千果. 碳中和背景下中国碳捕集、利用与封存项目经济效益和风险评估研究[J]. 热力发电, 2021, 50(9): 18-26. |
LIU Muxin, LIANG Xi, LIN Qianguo. Economic analysis and risk assessment for carbon capture, utilization and storage project under the background of carbon neutrality in China[J]. Thermal Power Generation, 2021, 50(9): 18-26. | |
[24] |
SAIDIAN M, PRASAD M. Effect of mineralogy on nuclear magnetic reso-nance surface relaxivity: A case study of Middle Bakken and Three Forks formations[J]. Fuel, 2015, 161: 197-206.
doi: 10.1016/j.fuel.2015.08.014 |
[25] | 赵清民, 伦增珉, 章晓庆, 等. 页岩油注CO2动用机理[J]. 石油与天然气地质, 2019, 40(6): 1333-1338. |
ZHAO Qingmin, LUN Zengmin, ZHANG Xiaoqing, et al. Mechanism of shale oil mobilization under CO2 injection[J]. Oil & Gas Geology, 2019, 40(6): 1333-1338. | |
[26] | 肖文联, 杨玉斌, 黄矗, 等. 基于核磁共振技术的页岩油润湿性及其对原油动用特征的影响[J]. 油气地质与采收率, 2023, 30(1): 112-121. |
XIAO Wenlian, YANG Yubin, HUANG Chu, et al. Rock wettability and its influence on crude oil producing characteristics based on NMR technology[J]. Petroleum Geology and Recovery Efficiency, 2023, 30(1): 112-121. | |
[27] | 李一波, 蔺祥, 彭瑀, 等. 热处理作用下页岩储层改造机理及提高采收率技术研究进展[J]. 油气地质与采收率, 2022, 29(4):101-108. |
LI Yibo, LIN Xiang, PENG Yu, et al. Research progress of shale reservoir stimulation mechanism and enhanced oil recovery technology under heat treatment[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 101-108. | |
[28] | 王香增, 杨红, 王伟, 等. 延长油田低渗透油藏提高采收率技术进展[J]. 油气地质与采收率, 2022, 29(4): 69-75. |
WANG Xiangzeng, YANG Hong, WANG Wei, et al. Technical advancements in enhanced oil recovery in low permeability reservoirs of Yanchang Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 69-75. | |
[29] | 吴晓峰, 盛家平, 熊晓菲. 吉木萨尔页岩油藏注气吞吐泡沫防窜实验研究[J]. 油气地质与采收率, 2022, 29(4):109-115. |
WU Xiaofeng, SHENG Jiaping, XIONG Xiaofei. Experimental study on foam anti-channeling during huff-n-puff gas injection in Jimsar shale oil reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(4): 109-115. |
[1] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
[2] | 张连锋,张伊琳,郭欢欢,李洪生,李俊杰,梁丽梅,李文静,胡书奎. 近废弃油藏延长生命周期开发调整技术 [J]. 油气藏评价与开发, 2024, 14(1): 124-132. |
[3] | 唐建东, 王智林, 葛政俊. 苏北盆地江苏油田CO2驱油技术进展及应用 [J]. 油气藏评价与开发, 2024, 14(1): 18-25. |
[4] | 石彦, 谢俊辉, 郭小婷, 吴通, 陈德全, 孙琳, 杜代军. 新疆油田中深层稠油CO2驱/吞吐实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 76-82. |
[5] | 赵坤,李泽阳,刘娟丽,胡可,江冉冉,王伟祥,刘秀珍. 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践 [J]. 油气藏评价与开发, 2024, 14(1): 83-90. |
[6] | 杨冰, 傅强, 官敬涛, 李林祥, 潘昊宇, 宋宏斌, 秦婷婷, 朱志伟. 特高含水油藏不同井网流场调整模拟与驱油效率 [J]. 油气藏评价与开发, 2023, 13(4): 519-524. |
[7] | 李颖, 马寒松, 李海涛, GANZER Leonhard, 唐政, 李可, 罗红文. 超临界CO2对碳酸盐岩储层的溶蚀作用研究 [J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
[8] | 陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
[9] | 姚红生,云露,昝灵,张龙胜,邱伟生. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践 [J]. 油气藏评价与开发, 2023, 13(2): 141-151. |
[10] | 张锦宏. 中国石化页岩油工程技术新进展 [J]. 油气藏评价与开发, 2023, 13(1): 1-8. |
[11] | 王晓明,陈军斌,任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望 [J]. 油气藏评价与开发, 2023, 13(1): 23-30. |
[12] | 宋书伶,杨二龙,沙明宇. 基于分子模拟的页岩油赋存状态影响因素研究 [J]. 油气藏评价与开发, 2023, 13(1): 31-38. |
[13] | 林中凯,张少龙,李传华,王敏,闫建平,蔡进功,耿斌,胡钦红. 湖相页岩油地层岩相组合类型划分及其油气勘探意义——以博兴洼陷沙河街组为例 [J]. 油气藏评价与开发, 2023, 13(1): 39-51. |
[14] | 刘叶轩,刘向君,丁乙,周鑫,梁利喜. 考虑隔层影响的页岩油储层可压性评价方法 [J]. 油气藏评价与开发, 2023, 13(1): 74-82. |
[15] | 谢鑫,窦正道,杨小敏,金晶,王媛媛,任飞. 小井眼提速技术在页岩油开发中的应用 [J]. 油气藏评价与开发, 2023, 13(1): 83-90. |
|