油气藏评价与开发 ›› 2021, Vol. 11 ›› Issue (6): 837-844.doi: 10.13809/j.cnki.cn32-1825/te.2021.06.006
收稿日期:
2020-10-09
发布日期:
2021-12-31
出版日期:
2021-12-26
作者简介:
王英伟(1985—),男,硕士,高级工程师,主要从事油气田开发地质方面的工作。地址:新疆克拉玛依市勘探开发研究院准噶尔路29号,邮政编码:834000。E-mail: 基金资助:
WANG Yingwei1(),WU Shunwei1,QIN Jianhua1,YE Yiping2,GAO Yang1,ZHANG Jing1
Received:
2020-10-09
Online:
2021-12-31
Published:
2021-12-26
摘要:
为明确新疆玛湖砂砾岩油藏储层条件下,超临界CO2浸泡对玛湖不同黏土矿物含量砂砾岩储层物性的影响规律。首先,根据现场储层岩心全岩X射线衍射(XRD)结果确定了储层黏土矿物类型及占比:高岭石(1.52 %)、蒙脱石(0.42 %)、绿泥石(0.73 %)、伊利石(0.68 %);其次,制作了与储层岩心孔渗接近的人造岩心;最后,利用超临界CO2高温高压反应装置在储层温度70 ℃、压力20 MPa条件下,开展超临界CO2浸泡对玛湖不同黏土矿物含量砂砾岩储层渗透率影响的实验研究。结果表明:黏土矿物含量为2.5 %~6.0 %时,注入CO2后储层渗透率增加,黏土矿物含量越低,作用时间越短,渗透率增加越明显;当储层中黏土矿物含量大于7.5 %时,随着作用时间的增加,渗透率逐渐降低,且黏土矿物含量越高降幅越大;黏土矿物含量为6.0 %~7.0 %时,CO2对储层渗透率改善效果最好。
中图分类号:
Yingwei WANG,Shunwei WU,Jianhua QIN, et al. Effects of supercritical CO2 immersion on permeability of sandy conglomerate reservoir with different clay mineral content in Mahu[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 837-844.
表3
岩心干燥超临界CO2浸泡前后气测渗透率、孔隙度变化情况"
岩心 编号 | 浸泡时间(d) | 气测渗透率(10-3 μm2) | 孔隙度(%) | |||
---|---|---|---|---|---|---|
浸泡前 | 浸泡后 | 浸泡前 | 浸泡后 | |||
LY-5-1 | 1 | 9.68 | 9.74 | 11.59 | 11.67 | |
LY-5-2 | 1 | 9.79 | 9.93 | 12.00 | 12.08 | |
LY-5-3 | 3 | 9.24 | 9.48 | 11.85 | 12.06 | |
LY-5-4 | 3 | 9.32 | 9.55 | 11.61 | 11.72 | |
LY-5-5 | 6 | 9.70 | 9.82 | 11.42 | 11.57 | |
LY-5-6 | 6 | 9.62 | 9.75 | 11.67 | 11.82 | |
LY-5-7 | 10 | 9.54 | 9.71 | 11.74 | 11.84 | |
LY-5-8 | 10 | 9.81 | 9.97 | 11.65 | 11.86 |
[1] | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1):13-25. |
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbons resources[J]. Petroleum Exploration and Development, 2015, 42(1):13-25. | |
[2] | 李国欣, 朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探, 2020, 25(2):1-13. |
LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2):1-13. | |
[3] | 吴西顺, 孙张涛, 杨添天, 等. 全球非常规油气勘探开发进展及资源潜力[J]. 海洋地质前沿, 2020, 36(4):1-17. |
WU Xishun, SUN Zhangtao, YANG Tiantian, et al. Global progress in exploration and development of unconventional hydrocarbons and assessment of resources potential[J]. Marine Geology Frontiers, 2020, 36(4):1-17. | |
[4] | 何云超, 张崇瑞. 新疆准噶尔盆地发现世界储量最大的砾岩油田[J]. 中国地质, 2017, 44(6):1174-1174. |
HE Yunchao, ZHANG Chongrui. The world’s largest conglomerate oil field discovered in Junggar basin, Xinjiang[J]. Geology In China, 2017, 44(6):1174-1174. | |
[5] | 李映艳, 钱根葆, 高阳, 等. 准噶尔盆地玛湖凹陷百口泉组砾岩致密油藏地质“甜点”分级标准及应用[J]. 东北石油大学学报, 2018, 42(6):85-94. |
LI Yingyan, QIAN Genbao, GAO Yang, et al. Identification criterion of the geological “sweet point” of conglomerate tight reservoir and its application of Baikouquan formation in Mahu sag, Junggar basin[J]. Journal of Northeast Petroleum University, 2018, 42(6):85-94. | |
[6] | ZHANG X, WEI B, SHANG J, et al. Alterations of geochemical properties of a tight sandstone reservoir caused by supercritical CO2-brine-rock interactions in CO2-EOR and geosequestration[J]. Journal of CO2 Utilization, 2018, 28:408-418. |
[7] | 施雷庭, 朱诗杰, 马杰, 等. 超临界CO2萃取致密油的数值模拟研究[J]. 油气藏评价与开发, 2019, 9(3):25-31. |
SHI Leiting, ZHU Shijie, MA Jie, et al. Numerical simulation of tight oil extraction with supercritical CO2[J]. Reservoir Evaluation and Development, 2019, 9(3):25-31. | |
[8] |
DU D J, PU W F, JIN F Y, et al. Experimental study on EOR by CO2 huff-n-puff and CO2 flooding in tight conglomerate reservoirs with pore scale[J]. Chemical Engineering Research and Design, 2020, 156:425-432.
doi: 10.1016/j.cherd.2020.02.018 |
[9] | 刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26(6):28-35. |
LIU Ling, TANG Dazhen, WANG Feng. Clay minerals characteristics of tight sandstone and its impact on reservoir physical properties Taiyuan formation of block Linxing in Ordos basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6):28-35. | |
[10] |
SONG Z J, SONG Y L, LI Y Z, et al. A critical review of CO2 enhanced oil recovery in tight oil reservoirs of North America and China[J]. Fuel, 2020, 276:118006.
doi: 10.1016/j.fuel.2020.118006 |
[11] |
LI S H, ZHANG S C, ZOU Y S, et al. Pore structure alteration induced by CO2-brine-rock interaction during CO2 energetic fracturing in tight oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2020, 191:107147.
doi: 10.1016/j.petrol.2020.107147 |
[12] |
WU S T, ZOU C N, MA D S, et al. Reservoir property changes during CO2-brine flow-through experiments in tight sandstone: Implications for CO2 enhanced oil recovery in the Triassic Chang 7 Member tight sandstone, Ordos Basin, China[J]. Journal of Asian earth sciences, 2019, 179:200-210.
doi: 10.1016/j.jseaes.2019.05.002 |
[13] | 戴彩丽, 丁行行, 于志豪, 等. CO2和地层水对储层物性的影响研究进展[J]. 油田化学, 2019, 36(4):741-747. |
DAI Caili, DING Xingxing, YU Zhihao, et al. Research progress on the effects of CO2 and formation water on reservoir physical properties[J]. Oilfield Chemistry, 2019, 36(4):741-747. | |
[14] |
REN B, DUNCAN I J. Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA[J]. Energy, 2019, 167:391-401.
doi: 10.1016/j.energy.2018.11.007 |
[15] | 袁舟, 廖新维, 赵晓亮, 等. 砂岩油藏CO2驱替过程中溶蚀作用对储层物性的影响[J]. 油气地质与采收率, 2020, 27(5):97-104. |
YUAN Zhou, LIAO Xinwei, ZHAO Xiaoliang, et al. Effect of dissolution on physical properties of sandstone reservoirs during CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2020, 27(5):97-104. | |
[16] | 周拓, 刘学伟, 王艳丽, 等. 致密油藏水平井分段压裂CO2吞吐实验研究[J]. 西南石油大学学报(自然科学版), 2017, 39(2):125-131. |
ZHOU Tuo, LIU Xuewei, WANG Yanli, et al. Experiments of CO2 huff-n-puff process in staged fracturing horizontal wells for developing tight oil reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2017, 39(2):125-131. | |
[17] |
WU S Y, LI Z M, SARMA H K. Influence of confinement effect on recovery mechanisms of CO2-enhanced tight-oil recovery process considering critical properties shift, capillarity and adsorption[J]. Fuel, 2019, 262:116569.
doi: 10.1016/j.fuel.2019.116569 |
[18] | 何应付, 赵淑霞, 刘学伟. 致密油藏多级压裂水平井CO2吞吐机理[J]. 断块油气田, 2018, 25(6):752-756. |
HE Yingfu, ZHAO Shuxia, LIU Xuewei, et al. Mechanism of CO2 Huff and Puff of multi-stage fractured horizontal well in tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2018, 25(6):752-756. | |
[19] | 李阳, 李树同, 牟炜卫, 等. 鄂尔多斯盆地姬塬地区长6段致密砂岩中黏土矿物对储层物性的影响[J]. 天然气地球科学, 2017, 28(7):1043-1053. |
LI Yang, LI Shutong, MOU Weiwei, et al. Influences of clay minerals on physical properties of Chang 6 tight sandstone reservoir in Jiyuan Area, Ordos Basin[J]. Natural Gas Geoscience, 2017, 28(7):1043-1053. | |
[20] | 刘玲, 汤达祯, 王烽. 鄂尔多斯盆地临兴区块太原组致密砂岩黏土矿物特征及其对储层物性的影响[J]. 油气地质与采收率, 2019, 26(6):28-35. |
LIU Ling, TANG Dazhen, WANG Feng. Clay minerals characteristics of tight sandstone and its impact on reservoir physical properties in Taiyuan Formation of block Linxing in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(6):28-35. | |
[21] |
SUN R X, YU W, XU F, et al. Compositional simulation of CO2 Huff-n-Puff process in Middle Bakken tight oil reservoirs with hydraulic fractures[J]. Fuel, 2019, 236:1446-1457.
doi: 10.1016/j.fuel.2018.09.113 |
[22] | 施雷庭, 户海胜, 张玉龙, 等. 致密砂砾岩矿物与超临界CO2和地层水相互作用[J]. 油田化学, 2019, 36(4):640-645. |
SHI Leiting, HU Haisheng, ZHANG Yulong, et al. Interaction of tight glutenite mineral with supercritical CO2 and formation water[J]. Oilfield Chemistry, 2019, 36(4):640-645. |
[1] | 汤勇, 唐凯, 夏光, 徐笛. BZ19-6低渗透储层反凝析污染及解除方法实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 102-107. |
[2] | 罗宪波. 海上砂砾岩油藏层间与层内干扰实验研究 [J]. 油气藏评价与开发, 2024, 14(1): 117-123. |
[3] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[4] | 梁运培, 张怀军, 王礼春, 秦朝中, 田键, 陈强, 史博文. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究 [J]. 油气藏评价与开发, 2023, 13(6): 834-843. |
[5] | 胡之牮, 李树新, 王建君, 周鸿, 赵玉龙, 张烈辉. 复杂人工裂缝产状页岩气藏多段压裂水平井产能评价 [J]. 油气藏评价与开发, 2023, 13(4): 459-466. |
[6] | 李颖, 马寒松, 李海涛, GANZER Leonhard, 唐政, 李可, 罗红文. 超临界CO2对碳酸盐岩储层的溶蚀作用研究 [J]. 油气藏评价与开发, 2023, 13(3): 288-295. |
[7] | 石军太,李文斌,张龙龙,季长江,李国富,张遂安. 压裂过程数据对原始煤储层压力反演方法研究 [J]. 油气藏评价与开发, 2022, 12(4): 564-571. |
[8] | 杨兆中,袁健峰,朱静怡,李小刚,李扬,王浩. 煤层气注热增产研究进展 [J]. 油气藏评价与开发, 2022, 12(4): 617-625. |
[9] | 赵兰. 致密砂岩储层微裂缝发育特征及对物性的影响——以杭锦旗地区十里加汗区带为例 [J]. 油气藏评价与开发, 2022, 12(2): 285-291. |
[10] | 户海胜,高阳,单江涛,雷现梅,张玉龙,张广超,叶仲斌. 超临界CO2萃取致密砂砾岩中原油效果影响因素实验研究 [J]. 油气藏评价与开发, 2021, 11(6): 845-851. |
[11] | 陈科,张旭东,何伟,尹超,唐磊,张虎,叶仲斌. 河流相储层渗透率对水驱微观驱替效果的影响及挖潜方向研究 [J]. 油气藏评价与开发, 2021, 11(5): 694-702. |
[12] | 万有维,刘向君,袁芳,熊健,李超. 塔里木盆地巴西改组岩石理化性能及力学特性研究 [J]. 油气藏评价与开发, 2021, 11(5): 753-759. |
[13] | 赵军,张涛,何胜林,张桓荣,韩东,汤翟. 基于参数优选的储层渗透率深度置信网络模型预测初探 [J]. 油气藏评价与开发, 2021, 11(4): 577-585. |
[14] | 宋文辉,刘磊,孙海,张凯,杨永飞,姚军. 基于数字岩心的页岩油储层孔隙结构表征与流动能力研究 [J]. 油气藏评价与开发, 2021, 11(4): 497-505. |
[15] | 李士伦,孙雷,陈祖华,李健,汤勇,潘毅. 再论CO2驱提高采收率油藏工程理念和开发模式的发展 [J]. 油气藏评价与开发, 2020, 10(3): 1-14. |
|