油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (1): 31-38.doi: 10.13809/j.cnki.cn32-1825/te.2023.01.004
收稿日期:
2021-11-13
出版日期:
2023-02-26
发布日期:
2023-01-30
作者简介:
宋书伶(1996—),女,硕士,助理工程师,从事油气田开发理论与技术研究。地址:湖北省武汉市东西湖区中国石化石油机械股份有限公司三机分公司,邮政编码:430040。E-mail:基金资助:
SONG shuling1(),YANG Erlong2,SHA Mingyu2
Received:
2021-11-13
Online:
2023-02-26
Published:
2023-01-30
摘要:
页岩油的可动用性直接影响有效勘探开发程度,而页岩油的可流动性与其赋存状态密切相关,因此,研究页岩油的赋存状态对其开发有重要作用。利用石墨烯和石英建立孔隙模型,采用分子模拟方法研究正辛烷及其混合物在纳米孔隙中的赋存状态,并分析了孔隙尺寸、温度、压力、页岩油组分、壁面润湿性和壁面组分对赋存状态的影响。结果表明:①页岩油在孔隙中呈多层吸附且关于孔隙中心对称,吸附层厚度均为0.4~0.5 nm;②储层孔隙尺寸越大、温度越高、压力越低、分子组分越轻、极性越弱、壁面润湿度越高越不利于页岩油分子在壁面吸附;③在组合壁面中,由于石墨烯壁面的影响随石英壁面润湿度增加页岩油分子吸附量越多,此外正己酸和环己烷也出现吸附转移现象。
中图分类号:
宋书伶,杨二龙,沙明宇. 基于分子模拟的页岩油赋存状态影响因素研究[J]. 油气藏评价与开发, 2023, 13(1): 31-38.
SONG shuling,YANG Erlong,SHA Mingyu. Influencing factors of occurrence state of shale oil based on molecular simulation[J]. Reservoir Evaluation and Development, 2023, 13(1): 31-38.
[1] |
孙焕泉, 蔡勋育, 周德华, 等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探, 2019, 24(5): 569-575.
doi: 10.3969/j.issn.1672-7703.2019.05.004 |
SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569-575.
doi: 10.3969/j.issn.1672-7703.2019.05.004 |
|
[2] | 袁凌荣, 孔令辉, 商建霞, 等. 乌石凹陷东区流沙港组成岩作用及次生孔隙发育特征[J]. 石油地质与工程, 2020, 34(6): 33-37. |
YUAN Lingrong, KONG Linghui, SHANG Jianxia, et al. Diagenesis and secondary pore development characteristics of Liushagang formation in the east of Wushi sag[J]. Petroleum Geology & Engineering, 2020, 34(6): 33-37. | |
[3] |
杨雷, 金之钧. 全球页岩油发展及展望[J]. 中国石油勘探, 2019, 24(5): 553-559.
doi: 10.3969/j.issn.1672-7703.2019.05.002 |
YANG Lei, JIN Zhijun. Global shale oil development and prospects[J]. China Petroleum Exploration, 2019, 24(5): 553- 559.
doi: 10.3969/j.issn.1672-7703.2019.05.002 |
|
[4] | 孙龙德. GL页岩油(代序)[J]. 大庆石油地质与开发, 2020, 39(3): 1-7. |
SUN Longde. Gulong shale oil(Preface)[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 39(3): 1-7. | |
[5] | 孙龙德, 刘合, 何文渊, 等. 大庆GL页岩油重大科学问题与研究路径探析[J]. 石油勘探与开发, 2021, 48(3): 453-463. |
SUN Longde, LIU He, HE Wenyuan, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development, 2021, 48(3): 453-463. | |
[6] | 郑建东, 王春燕, 章华兵, 等. 松辽盆地古龙页岩油储层七性参数和富集层测井评价方法[J]. 大庆石油地质与开发, 2021, 40(5): 87-97. |
ZHENG Jiandong, WANG Chunyan, ZHANG Huabing, et al. Logging evaluating method of seven property parameters and enriched layers for Gulong shale oil reservoir in Songliao Basin[J]. Daqing Petroleum Geology and Development, 2021, 40(5): 87-97. | |
[7] | 田善思. 页岩储层孔隙微观特征及页岩油赋存与可动性评价[D]. 青岛: 中国石油大学(华东), 2019. |
TIAN Shansi. Micro-pore characteristics of shale reservoirs and evaluation of shale oil occurrence and movability[D]. Qingdao: China University of Petroleum(East China), 2019. | |
[8] | 刘娜娜. 南川地区龙马溪组优质页岩段微观孔隙结构特征[J]. 石油地质与工程, 2021, 35(4): 21-25. |
LIU Nana. Micro pore structure characteristics of high quality shale section of Longmaxi formation in Nanchuan area[J]. Petroleum Geology & Engineering, 2021, 35(4): 21-25. | |
[9] | 程垒明. 吉木萨尔凹陷页岩油水平井地质工程一体化三维压裂设计探索[J]. 石油地质与工程, 2021, 35(2): 88-92. |
CHENG Leiming. Exploration of geological engineering integrated 3D fracturing design for horizontal wells in Jimsar shale oil reservoirs[J]. Petroleum Geology & Engineering, 2021, 35(2): 88-92. | |
[10] | 黄帅博. 焉耆盆地四十里城地区储层特征及孔隙演化[J]. 石油地质与工程, 2020, 34(2): 28-32. |
HUANG Shuaibo. Reservoir characteristics and pore evolution in Sishilicheng area of Yanqi basin[J]. Petroleum Geology & Engineering, 2020, 34(2): 28-32. | |
[11] | 柳波, 吕延防, 冉清昌, 等. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力[J]. 石油与天然气地质, 2014, 35(2): 280-285. |
LIU Bo, LU Yanfang, RAN Qingchang, et al. Geological conditions and exploration potential of shale oil in Qingshankou Formation, Northern Songliao Basin[J]. Oil & Gas Geology, 2014, 35(2): 280-285. | |
[12] | 李向哲. 页岩气在变截面纳米孔道中的流动机理研究[D]. 合肥: 中国科学技术大学, 2018. |
LI Xiangzhe. Lattice Boltzmann simulations about shale gas flow in contracting nanochannels[D]. Hefei: University of Science and Technology of China, 2018. | |
[13] |
WANG S, JAVADPOUR F, FENG Q H. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel, 2016, 171: 74-86.
doi: 10.1016/j.fuel.2015.12.071 |
[14] | WANG S, FENG Q H, JAVADPOUR F, et al. Oil adsorption in shale nanopores and its effect on recoverable oil-in-place[J]. International Journal of Coal Geology, 2015, 147: 9-24. |
[15] | 吴春正, 薛海涛, 卢双舫, 等. 页岩油在纳米级狭缝中吸附特征的分子动力学模拟[J]. 地质科技情报, 2018, 37(3): 202-209. |
WU Chunzheng, XUE Haitao, LU Shuangfang, et al. Molecular dynamics simulation of adsorption characteristics of shale oil in nanoscale slits[J]. Bulletin Geological Science and Technology, 2018, 37(3): 202-209. | |
[16] | 郭蒙蒙. 致密油吸附和流动特征的分子模拟研究[D]. 青岛: 中国石油大学(华东), 2018. |
GUO Mengmeng. A molecular simulation study on adsorption and flow characteristics of tight oil[D]. Qingdao: China University of Petroleum(East China), 2018. | |
[17] |
TIAN S S, XUE H T, LU S F, et al. Molecular simulation of oil mixture adsorption character in shale system[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6198-6209.
doi: 10.1166/jnn.2017.14487 |
[18] |
卢双舫, 薛海涛, 王民, 等. 页岩油评价中的若干关键问题及研究趋势[J]. 石油学报, 2016, 37(10): 1309-1322.
doi: 10.7623/syxb201610012 |
LU Shuangfang, XUE Haitao, WANG Min, et al. Several key issues and research trends in evaluation of shale oil[J]. Acta Petrolei Sinica, 2016, 37(10): 1309-1322.
doi: 10.7623/syxb201610012 |
|
[19] |
AMBROSER R J, HARTMAN R C, DIAZ-CAMPOS M, et al. Shale gas-in-place calculations part Ⅰ: New pore-scale considerations[J]. SPE Journal, 2012, 17(1): 219-229.
doi: 10.2118/131772-PA |
[20] | MOSHER K, HE J J, LIU Y Y, et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109: 36-44. |
[21] | 焦红岩, 董明哲, 刘仲伟, 等. 水环境下甲烷在不同润湿性石英表面吸附行为的分子动力学模拟[J]. 中国石油大学学报(自然科学版), 2014, 38(5): 178-183. |
JIAO Hongyan, DONG Mingzhe, LIU Zhongwei, et al. Molecular dynamics simulation of methane adsorption with presence of water on different wettability quartz surface[J]. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(5): 178-183. | |
[22] | PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics[J]. Journal of Computational Physics, 1995, 117(1): 1-19. |
[23] | 王森. 页岩油微尺度流动机理研究[D]. 青岛: 中国石油大学(华东), 2016. |
WANG Sen. Microscale flow mechanisms of oil in shale[D]. Qingdao: China University of Petroleum(East China), 2016. | |
[24] | National Institute of Standards and Technology. Thermophysical properties of fluid systems[EB/OL].(2011-09-28) [2021-10-08]. http://webbook.nist.gov/chemistry/fluid/. |
[25] |
DO D D, DO H D. Adsorption of flexible n-alkane on graphitized thermal carbon black: analysis of adsorption isotherm by means of GCMC simulation[J]. Chemical Engineering Science, 2005, 60(7): 1977-1986.
doi: 10.1016/j.ces.2004.12.009 |
[26] | WANG M, YANG J X, WANG Z W, et al. Nanometer-scale pore characteristics of lacustrine shale, Songliao Basin, NE China[J]. PLoS ONE, 2015, 10(8): e0135252. |
[27] | 王民, 马睿, 李进步, 等. 济阳坳陷古近系沙河街组湖相页岩油赋存机理[J]. 石油勘探与开发, 2019, 46(4): 789-802. |
WANG Min, MA Rui, LI Jinbu, et al. Occurrence mechanism of lacustrine shale oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China[J]. Petroleum Exploration and Development, 2019, 46(4): 789-802. | |
[28] | CUI X N, YANG E L, SONG K P, et al. Phase equilibrium of hydrocarbons confined in nanopores from a modified Peng-Robinson equation of state[C]// Paper SPE-191547-MS presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 2018. |
[29] |
YANG Y F, Liu J, Yao J, et al. Adsorption behaviors of shale oil in kerogen slit by molecular simulation[J]. Chemical Engineering Journal, 2020, 387(C): DOI: https://doi.org/10.1016/j.cej.2020.124054.
doi: https://doi.org/10.1016/j.cej.2020.124054 |
[30] | FREEMAN C M, MORIDIS G J, MICHAEL G E, et al. Measurement, modeling, and diagnostics of flowing gas composition changes in shale gas wells[C]// Paper SPE-153391-MS presented at the SPE Latin America and Caribbean Petroleum Engineering Conference, Mexico City, Mexico, April 2012. |
[31] | TINNI A, SONDERGELD C H, RAI C S. Hydrocarbon storage mechanism in shale reservoirs and impact on hydrocarbon production[C]// Paper URTEC-2697659-MS presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Austin, Texas, USA, July 2017. |
[1] | 许国晨,杜娟,祝铭辰. 苏北盆地页岩油注水吞吐增产实践与认识 [J]. 油气藏评价与开发, 2024, 14(2): 256-266. |
[2] | 李建山, 高浩, 鄢长灏, 王石头, 王亮亮. 原油-CO2相互作用机理分子动力学模拟研究 [J]. 油气藏评价与开发, 2024, 14(1): 26-34. |
[3] | 张志超,柏明星,杜思宇. 页岩油藏注CO2驱孔隙动用特征研究 [J]. 油气藏评价与开发, 2024, 14(1): 42-47. |
[4] | 赵坤,李泽阳,刘娟丽,胡可,江冉冉,王伟祥,刘秀珍. 吉木萨尔页岩油井区CO2前置压裂工艺参数优化及现场实践 [J]. 油气藏评价与开发, 2024, 14(1): 83-90. |
[5] | 姚红生,云露,昝灵,张龙胜,邱伟生. 苏北盆地溱潼凹陷阜二段断块型页岩油定向井开发模式及实践 [J]. 油气藏评价与开发, 2023, 13(2): 141-151. |
[6] | 张锦宏. 中国石化页岩油工程技术新进展 [J]. 油气藏评价与开发, 2023, 13(1): 1-8. |
[7] | 王晓明,陈军斌,任大忠. 陆相页岩油储层孔隙结构表征和渗流规律研究进展及展望 [J]. 油气藏评价与开发, 2023, 13(1): 23-30. |
[8] | 林中凯,张少龙,李传华,王敏,闫建平,蔡进功,耿斌,胡钦红. 湖相页岩油地层岩相组合类型划分及其油气勘探意义——以博兴洼陷沙河街组为例 [J]. 油气藏评价与开发, 2023, 13(1): 39-51. |
[9] | 刘叶轩,刘向君,丁乙,周鑫,梁利喜. 考虑隔层影响的页岩油储层可压性评价方法 [J]. 油气藏评价与开发, 2023, 13(1): 74-82. |
[10] | 谢鑫,窦正道,杨小敏,金晶,王媛媛,任飞. 小井眼提速技术在页岩油开发中的应用 [J]. 油气藏评价与开发, 2023, 13(1): 83-90. |
[11] | 靳军,唐洪明,周基贤,刘淼,张文锦,周翊. 阜康凹陷头屯河组敏感性评价及主控因素 [J]. 油气藏评价与开发, 2022, 12(6): 935-944. |
[12] | 王磊. 牛庄洼陷官17井区沙四段页岩油自悬浮支撑剂压裂试验 [J]. 油气藏评价与开发, 2022, 12(4): 684-689. |
[13] | 朱彤,张哲,冯动军,郑荣才,王烽,彭勇民. 梁平福禄镇剖面大安寨段泥页岩地质特征 [J]. 油气藏评价与开发, 2022, 12(1): 139-149. |
[14] | 王然,何文军,赵辛楣,刘国良,周作铭,赵毅. 准噶尔盆地吉174井芦草沟组页岩油地质剖面分析 [J]. 油气藏评价与开发, 2022, 12(1): 192-203. |
[15] | 钱永新,邹阳,赵辛楣,常秋生,何文军,黄立良. 准噶尔盆地玛湖凹陷玛页1井二叠系风城组全井段岩心剖析与油气地质意义 [J]. 油气藏评价与开发, 2022, 12(1): 204-214. |
|