油气藏评价与开发 ›› 2023, Vol. 13 ›› Issue (5): 647-656.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.012

• 页岩气 • 上一篇    下一篇

基于产量递减与LSTM耦合的常压页岩气井产量预测

韩克宁1(),王伟1,樊冬艳2(),姚军2,罗飞2,杨灿2   

  1. 1.中国石化华东油气分公司,江苏 南京210000
    2.中国石油大学(华东)石油工程学院,山东 青岛266580
  • 收稿日期:2022-11-08 出版日期:2023-10-26 发布日期:2023-11-01
  • 通讯作者: 樊冬艳(1985—),女,博士,副教授,现从事非常规油气试井及动态分析方法研究。地址:山东省青岛市黄岛区长江西路66号,邮政编码:266580。E-mail:fandongyan2010@126.com
  • 作者简介:韩克宁(1976-),男,本科,高级工程师,现从事页岩气勘探开发技术和管理工作。地址:江苏省南京市建邺区江东中路375号金融城9号楼,邮政编码:210000。E-mail:hankn.hdsj@sinopec.com
  • 基金资助:
    中国石化科技部项目“常压页岩气效益开发技术政策优化研究”(P21087-4);中国石化华东油气分公司项目“南川地区页岩气藏储层精细描述和开发评价研究”(34600000-21-ZC0613-0006)

Production forecasting for normal pressure shale gas wells based on coupling of production decline method and LSTM model

HAN Kening1(),WANG Wei1,FAN Dongyan2(),YAO Jun2,LUO Fei2,YANG Can2   

  1. 1. Sinopec East China Oil & Gas Company, Nanjing, Jiangsu 210000, China
    2. College of Petroleum Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
  • Received:2022-11-08 Online:2023-10-26 Published:2023-11-01

摘要:

针对常压页岩气井产气递减规律不明确、预测困难等问题,将产量递减模型与机器学习方法相结合,建立了一种新的页岩气井产量递减模型与LSTM(长短时间记忆神经网络)模型耦合预测方法。首先,依据页岩气井产水特点将南川常压页岩气井分为2类,类型1气井早期气水同产,后期产水明显减少,类型2气井长时间气水同产;其次,基于双对数诊断曲线和特征曲线明确气井的流动阶段,并采用7种常用的气井产量递减模型对不同类型页岩气井进行产量分析;最后,将递减模型的误差作为LSTM模型的输入,叠加得到耦合方法下产量预测。结果表明:拟稳态流动阶段的类型1的X1气井,优选递减模型为改进双曲递减模型和AKB递减模型,线性流动阶段的类型2的X2气井,优选SEPD(扩展指数递减)模型和Duong递减模型;对于递减模型误差较大时,耦合LSTM模型后,页岩气井产量预测精度明显提高,而递减模型误差较小时效果不显著。

关键词: 常压页岩气, 产量递减模型, LSTM模型, 流动阶段, 双对数诊断, 耦合方法

Abstract:

In order to address the challenges posed by the unclear production decline patterns and the difficulty in predicting production for normal pressure shale gas wells, a novel production prediction approach has been developed. This approach combines shale gas well production decline models with Long Short-Term Memory(LSTM) neural network models, leveraging machine learning techniques and different decline models for improved accuracy. Firstly, Nanchuan shale gas wells are divided into two types according to the characteristics of water production. For type 1, gas and water are produced simultaneously at the early stage, then water production decreases significantly in the later stage; while for type 2, gas and water are produced simultaneously for a long time. Secondly, double logarithmic diagnostic curves and characteristic curves are used to identify the flow stages of gas wells; then seven gas production decline models are used to analyze the production variety. Finally, the error of the decline models are used as the inputs of the LSTM model, meanwhile the yield prediction under the coupling method is obtained after superposition. The results show that a type 1 gas well, Well-X1, is in the pesudo-steady flow stage, its optimal decline model is the improved hyperbolic decline model or the AKB model; a type 2 gas well, Well-X2, is in the linear flow stage, the preferred models are SEPD decline and Duong decline model. When the error of the decline model is large, the production prediction accuracy of shale gas wells is effectively improved after coupling the LSTM model but the effect is not obvious when the error of the decline model is small.

Key words: normal shale gas reservoir, production decline method, LSTM model, flow stage, double logarithmic diagnosis, coupling method

中图分类号: 

  • TE312