油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (5): 824-833.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.012

• 油气开发 • 上一篇    下一篇

基于核磁共振与孔隙尺度模拟的致密油藏渗吸机理研究

齐怀彦1(), 杨国斌1, 朱亚娣1, 邓茗心1, 耿少阳2(), 田伟超3   

  1. 1.中国石油长庆油田分公司第三采油厂,宁夏 银川 750006
    2.长江大学石油工程学院,湖北 武汉 430100
    3.长江大学资源与环境学院,湖北 武汉 430100
  • 收稿日期:2024-11-08 发布日期:2025-09-19 出版日期:2025-10-26
  • 通讯作者: 耿少阳(1996—),男,博士,讲师,从事油气藏渗流机理及数值模拟、计算流体力学以及机器学习在油气藏开发中的应用等方面的研究。地址:湖北省武汉市蔡甸区大学路111号,邮政编码:430100。E-mail:gengshaoyang@yangtzeu.edu.cn
  • 作者简介:齐怀彦(1979—),男,本科,高级工程师,从事致密油藏开发及油田稳产方向研究。地址:宁夏回族自治区银川市东郊石油基地,邮编750006。E-mail:qihuaiyan@petrochina.com.cn
  • 基金资助:
    国家自然科学基金项目“注水吞吐条件下致密油的微观可动机理研究”(42202187)

Study on imbibition mechanisms in tight oil reservoirs based on nuclear magnetic resonance and pore-scale simulation

QI Huaiyan1(), YANG Guobin1, ZHU Yadi1, DENG Mingxin1, GENG Shaoyang2(), TIAN Weichao3   

  1. 1. No. 3 Oil Production Plant, PetroChina Changqing Oilfield Company, Yinchuan, Ningxia 750006, China
    2. School of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
    3. College of Resources and Environment, Yangtze University, Wuhan, Hubei 430100, China
  • Received:2024-11-08 Online:2025-09-19 Published:2025-10-26

摘要:

渗吸作用在致密油藏的注水开发和压裂后焖井阶段具有关键作用,是提高致密油藏采收率的有效手段。为深入探究致密储层复杂孔隙结构及岩石-流体相互作用对渗吸机理的影响,研究结合核磁共振技术与孔隙尺度渗吸数值模拟技术,针对不同孔喉特征的致密岩心开展了渗吸实验与孔隙尺度渗吸数值模拟研究。渗吸实验通过实时监测不同时间点的核磁共振T2(横向弛豫时间)谱,揭示了孔隙结构对渗吸效率的动态影响规律。孔隙尺度渗吸数值模拟研究则基于岩石薄片构建了真实致密砂岩孔隙尺度物理模型,通过求解纳维-斯托克斯方程并结合相场法,实现了致密砂岩孔隙尺度渗吸过程的模拟。在实验与模拟结果相互验证的基础上,详细分析了润湿角、原油黏度和储层物性对渗吸效率的影响。研究结果表明:孔隙尺度渗吸数值模拟结果与实验结果吻合良好。孔隙结构的复杂性显著影响渗吸的驱油特性,具体表现为渗吸初期速率较快,随后随渗吸时间延长而逐渐减缓。水相优先进入小孔隙,进而置换大孔隙中的油相。岩石-流体相互作用所产生的接触角越小(即岩石亲水性越强),渗吸过程中的油水驱替动力越大,渗吸效率越高。此外,油水黏度比越低、岩心渗透率越低,均会产生更强的自吸驱动力。研究成果从微观层面深化了对致密油藏渗吸机理的理解,为提高致密油藏开发效率提供了理论依据与实验支撑。

关键词: 致密油藏, 相场法, 渗吸, 孔隙尺度渗吸数值模拟, 核磁共振

Abstract:

Imbibition plays a crucial role in waterflood development and the soaking stage after fracturing in tight oil reservoirs, serving as an effective method to enhance oil recovery. To investigate the effects of complex pore structures and rock-fluid interactions on imbibition mechanisms in tight reservoirs, this study combined nuclear magnetic resonance (NMR) technology with pore-scale imbibition numerical simulation techniques, conducting imbibition experiments and pore-scale imbibition numerical simulations on tight cores with different pore-throat characteristics. In the imbibition experiments, NMR T2 spectra (transverse relaxation time) at different times were monitored in real time, which revealed the dynamic influencing patterns of pore structure on imbibition efficiency. In the pore-scale imbibition numerical simulations, realistic pore-scale physical models of tight sandstone were constructed based on thin sections, and the pore-scale imbibition process of tight sandstone was simulated by solving the Navier-Stokes equations combined with the phase field method. Based on the mutual verification of experimental and simulation results, the effects of contact angle, crude oil viscosity, and reservoir physical properties on imbibition efficiency were analyzed in detail. The results showed that the pore-scale imbibition numerical simulation results were in good agreement with the experimental data. The complexity of the pore structures significantly affected the oil displacement characteristics of imbibition, showing a relatively fast imbibition rate that gradually decreased with the extension of imbibition time. The aqueous phase preferentially entered smaller pores and then displaced the oil phase in larger pores. The smaller the contact angle resulting from rock-fluid interaction (i.e., the stronger the hydrophilicity of the rock), the greater the oil-water displacement driving force in the imbibition process and the higher the imbibition efficiency. In addition, a lower oil-water viscosity ratio and lower core permeability both generated stronger imbibition driving force. The research findings deepen the understanding of imbibition mechanisms in tight oil reservoirs at the microscopic level and provide theoretical foundation and experimental support for improving the development efficiency of tight oil reservoirs.

Key words: tight oil reservoirs, phase field method, imbibition, pore-scale imbibition numerical simulation, nuclear magnetic resonance

中图分类号: 

  • TE312