油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (5): 921-932.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.021
徐聃1,2,3(), 张聪4, 贾慧敏4, 李玉宏1,2,3, 秦胜飞2,5, 张文2,6, 周俊林1,2,3, 马尚伟1,2,3, 范焱1,2,3
收稿日期:
2025-01-16
发布日期:
2025-09-19
出版日期:
2025-10-26
作者简介:
徐聃(1991—),男,硕士,助理工程师,主要从事油气及非常规能源地质调查工作。地址:陕西省西安市长安区常宁新区仓台西路555号,邮政编码:710119。E-mail:xdan@mail.cgs.gov.cn
基金资助:
XU Dan1,2,3(), ZHANG Cong4, JIA Huimin4, LI Yuhong1,2,3, QIN Shengfei2,5, ZHANG Wen2,6, ZHOU Junlin1,2,3, MA Shangwei1,2,3, FAN Yan1,2,3
Received:
2025-01-16
Online:
2025-09-19
Published:
2025-10-26
摘要:
氦气作为关键战略性资源,储量十分有限,但其在气藏中的富集与稀释机制尚未明确。稀有气体同位素在表征气相与地下水相互作用方面发挥着重要作用。对沁水盆地南部3号煤煤层气中稀有气体组分含量和同位素进行测试分析,明确该区域煤层气中稀有气体同位素组成特征,建立氦气成藏模式。采集13口煤层气生产井的气体样品,结果显示:煤层气中氦含量普遍比空气中高一个数量级,氦同位素3He/4He值为0.002 9~0.021 8 Ra,幔源贡献极低(0~0.31%);20Ne/22Ne值为10.09~10.43,21Ne/22Ne值为0.029 6~0.031 9,均略高于空气值,21Ne相对空气过剩;40Ar/36Ar值为295.23~779.44,整体大于空气值,受壳源40Ar年代累积效应显著影响;氪和氙的同位素特征与空气类似。氦产量定量计算揭示,自生自储煤层气系统中存在来自煤层外部的4He通量。4He与20Ne的线性关系表明,氦在脱气进入气藏前溶解于地下水中,从煤层解吸的甲烷稀释了地下水伴生气中的氦(氖、氩),因此,品位较低的气藏反而更容易富集氦气。氦气主要分布在具有有效氦源岩、古老地下水系统、高效运移通道和适当生烃强度的地区,这为在煤层气中寻找氦气资源提供了理论基础。瑞利分馏和稀释模型以及采气量量化显示,每口井采气过程中的水量为8.03×103~1.63×106 m3,煤层气开采仅影响每口井周围的局部水,以此为依据可以优化井距设计。
中图分类号:
XU Dan,ZHANG Cong,JIA Huimin, et al. Noble gas isotopic characteristics and helium dilution of coalbed methane from the third coal seam in southern Qinshui Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 921-932.
表1
沁水盆地南部3号煤煤层气中气体组分含量及碳氢同位素"
样品号 | 层位 | 日产水量/m3 | 日产气量/m3 | 累计产气量/m3 | 气体组分含量/% | δ13C1/‰ | δ | |||
---|---|---|---|---|---|---|---|---|---|---|
N2 | CO2 | C1 | C2 | |||||||
23MCQ-02 | 山西组 | 0.01 | 140 | 0.13 | 0.03 | 99.69 | 0.10 | -32.7 | -183.7 | |
23MCQ-03 | 山西组 | 0.10 | 185 | 0.22 | 0.05 | 99.62 | 0.04 | -33.4 | -189.0 | |
23MCQ-11 | 山西组 | 3.20 | 663 | 2 417 819 | 0.31 | 0.02 | 99.63 | 0.01 | -39.8 | -200.5 |
23MCQ-13 | 山西组 | 0.40 | 450 | 2 675 283 | 0.48 | 0.01 | 99.42 | 0.01 | -38.8 | -197.8 |
23MCQ-17 | 山西组 | 1.20 | 101 | 261 325 | 0.19 | 0.01 | 99.75 | 0.02 | -34.9 | -196.6 |
23MCQ-20 | 山西组 | 1.00 | 9 429 | 12 728 142 | 0.23 | 0.01 | 99.72 | 0.01 | -35.5 | -182.0 |
23MCQ-23 | 山西组 | 15.00 | 3 161 | 4 610 224 | 0.41 | 0.03 | 99.48 | 0.01 | -34.2 | -185.3 |
23MCQ-25 | 山西组 | 2.50 | 4 220 | 5 638 917 | 0.24 | 0.02 | 99.72 | 0.00 | -32.7 | -177.9 |
23MCQ-28 | 山西组 | 5.20 | 3 188 | 9 053 788 | 0.59 | 0.03 | 99.31 | 0.00 | -36.9 | -181.6 |
23MCQ-29 | 山西组 | 0.01 | 11 159 | 17 522 610 | 0.40 | 0.03 | 99.52 | 0.00 | -36.0 | -185.1 |
23MCQ-35 | 山西组 | 16.10 | 6 166 | 16 528 352 | 0.40 | 0.09 | 99.36 | 0.02 | -31.7 | -175.4 |
表2
沁水盆地南部3号煤煤层气中稀有气体组分含量"
样品号 | 稀有气体组分含量 | ||||
---|---|---|---|---|---|
He/10-6 | Ne/10-8 | Ar/10-5 | Kr/10-10 | Xe/10-11 | |
23MCQ-02 | 67.40±4.75 | 2.30±0.03 | 1.41±0.01 | 8.50 ± 0.49 | 5.30±0.34 |
23MCQ-03 | 50.11±0.95 | 2.66±0.03 | 1.94±0.02 | 12.32 ± 0.45 | 8.94±0.50 |
23MCQ-11 | 25.03±1.27 | 7.44±0.11 | 15.41±0.15 | 111.50 ± 4.99 | 24.86±0.82 |
23MCQ-13 | 39.20±0.46 | 9.50±0.10 | 19.00±0.19 | 139.73±10.79 | 28.28±1.52 |
23MCQ-17 | 27.22±0.41 | 6.46±0.07 | 6.75±0.07 | 41.07 ± 0.88 | 16.07±0.56 |
23MCQ-20 | 34.82±2.49 | 18.87±0.20 | 17.09±0.17 | 104.94 ± 3.80 | 35.18±1.37 |
23MCQ-23 | 106.10±7.41 | 12.81±0.49 | 14.53±0.15 | 85.42 ± 2.83 | 14.11±1.22 |
23MCQ-25 | 16.68±0.21 | 4.41±0.05 | 10.11±0.10 | 85.78 ± 4.04 | 4.25±0.26 |
23MCQ-28 | 18.98±0.23 | 6.07±0.07 | 25.69±0.26 | 163.92 ± 5.13 | 14.51±0.60 |
23MCQ-29 | 8.83±0.17 | 4.32±0.07 | 16.96±0.17 | 129.57 ± 4.83 | 12.96±0.56 |
23MCQ-35 | 25.03±0.33 | 2.27±0.03 | 4.91±0.05 | 26.43 ± 0.69 | 6.71±0.39 |
表3
沁水盆地南部3号煤煤层气中稀有气体同位素比值"
样品号 | (3He/4He)/10-8 | 4He/20Ne | 20Ne/22Ne | 21Ne/22Ne | 40Ar/36Ar | 38Ar/36Ar |
---|---|---|---|---|---|---|
23MCQ-02 | 1.59±0.72 | 3 224.67 | 10.27±0.18 | 0.031 0±0.001 1 | 779.44±7.80 | 0.173 0±0.008 2 |
23MCQ-03 | 1.62±0.55 | 2 069.52 | 10.34±0.17 | 0.031 9±0.000 9 | 651.35±6.52 | 0.190 7±0.004 3 |
23MCQ-11 | 3.05±1.23 | 370.47 | 10.19±0.27 | 0.030 9±0.001 0 | 295.23±2.96 | 0.180 3±0.003 3 |
23MCQ-13 | 1.51±0.21 | 454.38 | 10.13±0.15 | 0.030 6±0.000 6 | 295.51±2.96 | 0.180 3±0.003 4 |
23MCQ-17 | 1.68±0.34 | 463.34 | 10.33±0.15 | 0.029 6±0.000 7 | 325.06±3.25 | 0.183 6±0.002 7 |
23MCQ-20 | 2.54±0.36 | 202.98 | 10.32±0.15 | 0.030 2±0.000 7 | 317.94±3.18 | 0.187 4±0.003 5 |
23MCQ-23 | 1.68±0.29 | 912.33 | 10.13±0.43 | 0.030 6±0.001 0 | 305.26±3.05 | 0.178 6±0.002 7 |
23MCQ-25 | 2.24±0.59 | 416.22 | 10.18±0.17 | 0.031 3±0.000 8 | 306.39±3.07 | 0.180 1±0.005 3 |
23MCQ-28 | 1.62±0.35 | 344.49 | 10.09±0.16 | 0.030 5±0.000 7 | 295.53±2.96 | 0.182 5±0.003 0 |
23MCQ-29 | 0.79±0.21 | 224.50 | 10.43±0.20 | 0.029 9±0.000 7 | 298.56±2.99 | 0.185 9±0.004 8 |
23MCQ-35 | 0.40±0.12 | 1 216.20 | 10.16±0.16 | 0.031 0±0.000 7 | 425.31±4.25 | 0.184 4±0.002 8 |
表5
气水平衡计算结果"
样品 | 20Ne/10-8 | 36Ar/10-7 | 20Ne/36Ar | 36Ar计算值/10-7 | 36Ar计算值/实测值 |
---|---|---|---|---|---|
23MCQ-11 | 6.76 | 5.20 | 0.130 | 5.893 | 1.13 |
23MCQ-13 | 8.63 | 6.40 | 0.135 | 6.023 | 0.94 |
23MCQ-17 | 5.87 | 2.07 | 0.284 | 9.467 | 4.58 |
23MCQ-20 | 17.16 | 5.36 | 0.320 | 1.018 | 1.90 |
23MCQ-23 | 11.63 | 4.74 | 0.245 | 8.662 | 1.83 |
23MCQ-25 | 4.01 | 3.29 | 0.122 | 8.071 | 2.46 |
23MCQ-28 | 5.51 | 8.66 | 0.064 | 5.743 | 0.66 |
23MCQ-29 | 3.93 | 5.66 | 0.069 | 6.013 | 1.06 |
23MCQ-35 | 2.06 | 1.15 | 0.179 | 7.148 | 6.20 |
[1] | BALLENTINE C J, BURGESS R, MARTY B. Tracing fluid origin, transport and interaction in the crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 539-614. |
[2] |
张文, 陈文, 李玉宏, 等. 国内外典型富氦气藏稀有气体地球化学特征及对氦气成藏过程的示踪意义[J]. 天然气地球科学, 2024, 35(6): 1099-1112.
doi: 10.11764/j.issn.1672-1926.2023.09.012 |
ZHANG Wen, CHEN Wen, LI Yuhong, et al. Geochemical characteristics of noble gases in typical helium-rich gas reservoirs and the significance for tracing helium enrichment process[J]. Natural Gas Geoscience, 2024, 35(6): 1099-1112.
doi: 10.11764/j.issn.1672-1926.2023.09.012 |
|
[3] | 李伟, 陈践发, 王杰, 等. 松辽盆地天然气中稀有气体地球化学特征及其地质意义[J]. 石油实验地质, 2024, 46(3): 576-589. |
LI Wei, CHEN Jianfa, WANG Jie, et al. Geochemical characteristics and geological significance of noble gases in natural gas from Songliao Basin, China[J]. Petroleum Geology & Experiment, 2024, 46(3): 576-589. | |
[4] | 何大祥, 唐友军, 胡锦杰, 等. 塔里木盆地天然气中稀有气体地球化学特征[J]. 石油与天然气地质, 2020, 41(4): 755-762. |
HE Daxiang, TANG Youjun, HU Jinjie, et al. Geochemical characteristics of noble gases in natural gases from the Tarim Basin[J]. Oil & Gas Geology, 2020, 41(4): 755-762. | |
[5] |
韩伟, 刘文进, 李玉宏, 等. 柴达木盆地北缘稀有气体同位素特征及氦气富集主控因素[J]. 天然气地球科学, 2020, 31(3): 385-392.
doi: 10.11764/j.issn.1672-1926.2019.10.008 |
HAN Wei, LIU Wenjin, LI Yuhong, et al. Characteristics of rare gas isotopes and main controlling factors of radon enrichment in the northern margin of Qaidam Basin[J]. Natural Gas Geoscience, 2020, 31(3): 385-392.
doi: 10.11764/j.issn.1672-1926.2019.10.008 |
|
[6] | CHEN B, STUART F M, XU S, et al. Evolution of coal-bed methane in Southeast Qinshui Basin, China: Insights from stable and noble gas isotopes[J]. Chemical Geology, 2019, 529: 119298. |
[7] | 徐永昌, 王先彬, 吴仁铭, 等. 天然气中稀有气体同位素[J]. 地球化学, 1979, 8(4): 271-282. |
XU Yongchang, WANG Xianbin, WU Renming, et al. Rare gas isotopic composition of natural gases[J]. Geochimica, 1979, 8(4): 271-282. | |
[8] | 魏国齐, 王东良, 王晓波, 等. 四川盆地高石梯—磨溪大气田稀有气体特征[J]. 石油勘探与开发, 2014, 41(5): 533-538. |
WEI Guoqi, WANG Dongliang, WANG Xiaobo, et al. Characteristics of noble gases in the large Gaoshiti-Moxi gas field in Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(5): 533-538. | |
[9] | MAMYRIN B A, TOLSTIKHIN I N. Helium isotopes in nature[M]. Amsterdam: Elsevier, 1984. |
[10] | KANEOKA I, TAKAOKA N. Noble-gas state in the Earth’s interior: Some constraints on the present state[J]. Chemical Geology: Isotope Geoscience Section, 1985, 52(1): 75-95. |
[11] | POREDA R J, JENDEN P D, KAPLAN I R, et al. Mantle helium in Sacramento basin natural gas wells[J]. Geochimica et Cosmochimica Acta, 1986, 50(12): 2847-2853. |
[12] | MOREIRA M, SARDA P. Noble gas constraints on degassing processes[J]. Earth and Planetary Science Letters, 2000, 176(3/4): 375-386. |
[13] | ZHANG R H, HU S M. A case study of the influx of upper mantle fluids into the crust[J]. Journal of Volcanology and Geothermal Research, 2002, 118(3/4): 319-338. |
[14] | O’NIONS R K, OXBURGH E R. Helium, volatile fluxes and the development of continental crust[J]. Earth and Planetary Science Letters, 1988, 90(3): 331-347. |
[15] | 王先彬. 稀有气体同位素地球化学和宇宙化学[M]. 北京: 科学出版社, 1989. |
WANG Xianbin. Noble Gas Isotope Geochemistry and Cosmochemistry[M]. Beijing: Science Press, 1989. | |
[16] | WAKITA H, SANO Y, URABE A, et al. Origin of methane-rich natural gas in Japan: Formation of gas fields due to large-scale submarine volcanism[J]. Applied Geochemistry, 1990, 5(3): 263-278. |
[17] | 徐永昌, 沈平, 刘文汇, 等. 天然气中稀有气体地球化学[M]. 北京: 科学出版社, 1998. |
XU Yongchang, SHEN Ping, LIU Wenhui. Geochemistry of noble gases in natural gas[M]. Beijing: Science Press, 1998. | |
[18] | ROCHOLL A, HEUSSER E, KIRSTEN T, et al. A noble gas profile across a Hawaiian mantle xenolith: Coexisting accidental and cognate noble gases derived from the lithospheric and asthenospheric mantle beneath Oahu[J]. Geochimica et Cosmochimica Acta, 1996, 60(23): 4773-4783. |
[19] | 王勃. 沁水盆地煤层气富集高产规律及有利区块预测评价[D]. 徐州: 中国矿业大学, 2013. |
WANG Bo. Coalbed methane enrichment and high-production rule & prospective area prediction in Qinshui basin[D]. Xuzhou: China University of Mining and Technology, 2013. | |
[20] | 李金海. 沁水盆地东南部3号煤层气藏富集高渗控制因素分析[D]. 焦作: 河南理工大学, 2009. |
LI Jinhai. Controlling factors on the accumulation and permeability of the No.3 coalbed methane reservoir in the southeastern Qinshui basin[D]. Jiaozuo: Henan Polytechnic University, 2009. | |
[21] | 贾慧敏, 胡秋嘉, 张聪, 等. 山西省沁水盆地南部4#煤薄煤层试采获得煤层气工业气流[J]. 中国地质, 2024, 51(4): 1447-1448. |
JIA Huimin, HU Qiujia, ZHANG Cong, et al. Industrial gas flow obtained from the trial production of No.4 thin coal seam in southern Qinshui Basin, Shanxi Province[J]. Geology in China, 2024, 51(4): 1447-1448. | |
[22] | 杨延辉, 张鹏豹, 刘忠, 等. 沁水盆地南部深层高阶煤层气成藏特征[J]. 中国石油勘探, 2024, 29(5): 107-119. |
YANG Yanhui, ZHANG Pengbao, LIU Zhong, et al. Gas accumulation characteristics of high-rank coal in deep formations in the southern Qinshui Basin[J]. China Petroleum Exploration, 2024, 29(5): 107-119. | |
[23] | 王红岩, 张建博, 刘洪林, 等. 沁水盆地南部煤层气藏水文地质特征[J]. 煤田地质与勘探, 2001, 29(5): 33-36. |
WANG Hongyan, ZHANG Jianbo, LIU Honglin, et al. Hydrogeologic feature of coalbed methane reservoir in the southern Qinshui Basin[J]. Coal Geology & Exploration, 2001, 29(5): 33-36. | |
[24] | ZHANG W, CHEN W, LI Y H, et al. Noble gas characteristics of microbial gas in the Qaidam Basin, China: Implications for helium enrichment processes[J]. Marine and Petroleum Geology, 2024, 165: 106897. |
[25] | 姚永坚, 何家雄, 徐行, 等. 南海北部大陆边缘盆地天然气/水合物成因类型与气源综合判识[J]. 矿产勘查, 2024, 15(11): 2075-2088. |
YAO Yongjian, HE Jiaxiong, XU Xing, et al. Comprehensive identification of natural gas/hydrate genesis types and gas sources in the northern continental margin basins of the South China Sea[J]. Mineral Exploration, 2024, 15(11): 2075-2088. | |
[26] | 徐占杰. 沁水盆地北部煤层气同位素地球化学及成因研究[D]. 北京: 中国矿业大学(北京), 2017. |
XU Zhanjie. Study on isotopic geochemistry and origins of coalbed methane in the northern Qinshui basin[D]. Beijing: China University of Mining & Technology, Beijing, 2017. | |
[27] |
方鲁加, 陈碧莹, 能惠, 等. 沁水盆地煤层气井排采水地球化学特征及来源示踪[J]. 天然气地球科学, 2024, 35(11): 1935-1949.
doi: 10.11764/j.issn.1672-1926.2024.01.007 |
FANG Lujia, CHEN Biying, NAI Hui, et al. Geochemical characteristics and source trace of coalbed methane co-produced water in Qinshui Basin[J]. Natural Gas Geoscience, 2024, 35(11): 1935-1949.
doi: 10.11764/j.issn.1672-1926.2024.01.007 |
|
[28] | SANO Y, FISCHER T P. The noble gases as geochemical tracers[M]. Berlin: Springer, 2013. |
[29] | KIPFER R, AESCHBACH-HERTIG W, PEETERS F, et al. Noble gases in lakes and ground waters[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 615-700. |
[30] | GAUTHERON C, MOREIRA M. Helium signature of the subcontinental lithospheric mantle[J]. Earth and Planetary Science Letters, 2002, 199(1/2): 39-47. |
[31] | BOTTOMLEY D J, ROSS J D, CLARKE W B. Helium and neon isotope geochemistry of some ground waters from the Canadian Precambrian Shield[J]. Geochimica et Cosmochimica Acta, 1984, 48(10): 1973-1985. |
[32] | LEE J Y, MARTI K, SEVERINGHAUS J P, et al. A redetermination of the isotopic abundances of atmospheric Ar[J]. Geochimica et Cosmochimica Acta, 2006, 70(17): 4507-4512. |
[33] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[34] | 刘文汇, 徐永昌. 天然气中氦氩同位素组成的意义[J]. 科学通报, 1993, 38(9):818-821. |
LIU Wenhui, XU Yongchang. Significance of helium and argon isotopic composition in natural gas[J]. Chinese Science Bulletin, 1993, 38(9):818-821. | |
[35] |
徐永昌, 刘文汇, 沈平, 等. 天然气地球化学的重要分支: 稀有气体地球化学[J]. 天然气地球科学, 2003, 14(3): 157-166.
doi: 10.11764/j.issn.1672-1926.2003.03.157 |
XU Yongchang, LIU Wenhui, SHEN Ping, et al. An important branch of gas geochemistry: Noble gas geochemistry[J]. Natural Gas Geoscience, 2003, 14(3): 157-166. | |
[36] |
李玉宏, 张文, 王利, 等. 亨利定律与壳源氦气弱源成藏: 以渭河盆地为例[J]. 天然气地球科学, 2017, 28(4): 495-501.
doi: 10.11764/j.issn.1672-1926.2017.02.015 |
LI Yuhong, ZHANG Wen, WANG Li, et al. Henry’s Law and accumulation of crust-derived helium: A case from Weihe Basin, China[J]. Natural Gas Geoscience, 2017, 28(4): 495-501.
doi: 10.11764/j.issn.1672-1926.2017.02.015 |
|
[37] | BARRY P H, LAWSON M, MEURER W P, et al. Determining fluid migration and isolation times in multiphase crustal domains using noble gases[J]. Geology, 2017, 45(9): 775-778. |
[38] | BARRY P H, KULONGOSKI J T, LANDON M K, et al. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases[J]. Earth and Planetary Science Letters, 2018, 496: 57-67. |
[39] | BYRNE D J, BARRY P, LAWSON M, et al. Determining gas expulsion vs retention during hydrocarbon generation in the Eagle Ford Shale using noble gases[J]. Geochimica et Cosmochimica Acta, 2018, 241:240-254. |
[40] | 刘润川. 华北克拉通中部沁水盆地中-新生代热体制与岩石圈减薄研究[D]. 西安: 西北大学, 2020. |
LIU Runchuan. Meso-Cenozoic thermal regime and lithospheric thinning in the Qin Shui basin, CNCC[D]. Xi’an: Northwest University, 2020. | |
[41] | 景兴鹏. 沁水盆地南部储层压力分布规律和控制因素研究[J]. 煤炭科学技术, 2012, 40(2): 116-120, 124. |
JING Xingpeng. Study on pressure distribution law and control factors of coal bed methane reservoir in south part of Qinshui Basin[J]. Coal Science and Technology, 2012, 40(2): 116-120, 124. | |
[42] | 卫明明, 琚宜文. 沁水盆地南部煤层气田产出水地球化学特征及其来源[J]. 煤炭学报, 2015, 40(3): 629-635. |
WEI Mingming, JU Yiwen. Chemical characteristics and origin of produced waters from coalbed gas field in the southern of Qinshui Basin[J]. Journal of China Coal Society, 2015, 40(3): 629-635. | |
[43] | ZHANG W, LI Y H, ZHAO F H, et al. Quantifying the helium and hydrocarbon accumulation processes using noble gases in the North Qaidam Basin, China[J]. Chemical Geology, 2019, 525: 368-379. |
[44] | 宋岩, 柳少波, 洪峰, 等. 中国煤层气地球化学特征及成因[J]. 石油学报, 2012, 33(增刊1): 99-106. |
SONG Yan, LIU Shaobo, HONG Feng, et al. Geochemical characteristics and genesis of coalbed methane in China[J]. Acta Petrolei Sinica, 2012, 33(Suppl. 1): 99-106. | |
[45] | ZHOU Z, BALLENTINE C J, KIPFER R, et al. Noble gas tracing of groundwater/coalbed methane interaction in the San Juan Basin, USA[J]. Geochimica et Cosmochimica Acta, 2005, 69(23): 5413-5428. |
[46] | BROWN A A. Formation of high helium gases: A guide for explorationists[C]// Paper 80115 presented at AAPG Convention, New Orleans, Louisiana, USA, April 11-14, 2010. |
[47] | 秦胜飞, 陶刚, 罗鑫, 等. 氦气富集与天然气成藏差异、勘探误区[J]. 天然气工业, 2023, 43(12): 138-151. |
QIN Shengfei, TAO Gang, LUO Xin, et al. Difference between helium enrichment and natural gas accumulation and misunderstandings in helium exploration[J]. Natural Gas Industry, 2023, 43(12): 138-151. | |
[48] | ZHOU Z, BALLENTINE C J. 4He dating of groundwater associated with hydrocarbon reservoirs[J]. Chemical Geology, 2006, 226(3/4): 309-327. |
[49] | 刘旭东. 沁水盆地柿庄南示范工程二氧化碳驱煤层气地质封存数值模拟研究[D]. 徐州: 中国矿业大学, 2023. |
LIU Xudong. Study on numerical simulation of CO2-ECBM for Shizhuangnan demonstration project in Qinshui basin[D]. Xuzhou: China University of Mining and Technology, 2023. | |
[50] | CRAIG H, LUPTON J E. Primordial neon, helium, and hydrogen in oceanic basalts[J]. Earth and Planetary Science Letters, 1976, 31(3): 369-385. |
[51] | 车青松, 黄文辉, 久博, 等. 沁水盆地霍州矿区石炭-二叠纪煤中微量元素地球化学特征及沉积环境分析[J]. 煤炭科学技术, 2022, 50(9): 138-146. |
CHE Qingsong, HUANG Wenhui, Bo JIU, et al. Geochemical characteristics and sedimentary environment analysis of trace elements in Carboniferous-Permian coal in Huozhou Area, Qinshui Basin[J]. Coal Science and Technology, 2022, 50(9): 138-146. | |
[52] |
秦胜飞, 窦立荣, 陶刚, 等. 氦气富集理论及富氦资源勘探思路[J]. 石油勘探与开发, 2024, 51(5): 1160-1174.
doi: 10.11698/PED.20240016 |
QIN Shengfei, DOU Lirong, TAO Gang, et al. Helium enrichment theory and exploration ideas for helium-rich gas reservoirs[J]. Petroleum Exploration and Development, 2024, 51(5): 1160-1174. | |
[53] | 李济远, 李玉宏, 胡少华, 等. “山西式”氦气成藏模式及其意义[J]. 西安科技大学学报, 2022, 42(3): 529-536. |
LI Jiyuan, LI Yuhong, HU Shaohua, et al. “Shanxi-type” helium accumulation model and its essentiality[J]. Journal of Xi’an University of Science and Technology, 2022, 42(3): 529-536. | |
[54] | HALFORD D T, KAROLYTĖ R, BARRY P H, et al. High helium reservoirs in the Four Corners area of the Colorado Plateau, USA[J]. Chemical Geology, 2022, 596: 120790. |
[55] |
刘广景. 煤层气高产水井原因分析及水源识别: 以沁水盆地柿庄南区块3号煤井为例[J]. 天然气勘探与开发, 2023, 46(3): 123-130.
doi: 10.12055/gaskk.issn.1673-3177.2023.03.015 |
LIU Guangjing. Reasons on high water production and identifying water source in CBM wells: An example from No.3 coal seam, southern Shizhuang block, Qinshui Basin[J]. Natural Gas Exploration and Development, 2023, 46(3): 123-130.
doi: 10.12055/gaskk.issn.1673-3177.2023.03.015 |
|
[56] | 张瑾, 张凤奇, 邹彦荣, 等. 地热水溶型和天然气伴生型氦气来源特征对比: 以渭河盆地和鄂尔多斯盆地北部为例[J]. 油气藏评价与开发, 2025, 15(3): 463-470. |
ZHANG Jin, ZHANG Fengqi, ZOU Yanrong, et al. Comparison of helium source characteristics between geothermal water-dissolved type and natural gas-associated type: A case study of Weihe Basin and northern Ordos Basin[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(3): 463-470. |
[1] | 于朕翔, 陈雷, 陈鑫, 刘睿, 谭秀成, 吴帅材, 秦何星, 许强. 川南长宁地区五峰组—龙马溪组氦气特征及资源潜力分析 [J]. 油气藏评价与开发, 2025, 15(5): 933-946. |
[2] | 张瑾, 张凤奇, 邹彦荣, 任小庆, 陈红果, 王鹏涛, 茹荣, 张文. 地热水溶型和天然气伴生型氦气来源特征对比——以渭河盆地和鄂尔多斯盆地北部为例 [J]. 油气藏评价与开发, 2025, 15(3): 463-470. |
[3] | 武玺. 沁水盆地高阶煤煤层气水平井高效开发技术及实践 [J]. 油气藏评价与开发, 2025, 15(2): 167-174. |
[4] | 王良军, 王勇, 章新文, 金芸芸, 朱颜, 张高源, 李晖, 李旺举. 鄂尔多斯盆地南部聚煤作用控气和煤层气勘探潜力——以旬宜探区石炭系太原组为例 [J]. 油气藏评价与开发, 2025, 15(2): 175-184. |
[5] | 朱苏阳, 刘伟, 王运峰, 贾春生, 陈朝刚, 彭小龙. 四川盆地煤层气勘探开发现状与前景 [J]. 油气藏评价与开发, 2025, 15(2): 185-193. |
[6] | 杨雪, 田冲, 杨雨然, 张景缘, 王青, 吴伟, 罗超. 四川盆地长宁地区深层煤层气成藏特征与勘探潜力 [J]. 油气藏评价与开发, 2025, 15(2): 194-204. |
[7] | 王鹏翔, 张洲, 余婉莹, 邹强, 杨正滔. 深/浅部煤储层孔裂隙结构及三维空间分布差异特征 [J]. 油气藏评价与开发, 2025, 15(2): 227-236. |
[8] | 余洋, 董银涛, 李云波, 包宇, 张立侠, 孙浩. 基于改进SSA-BPNN的煤层气直井井底流压预测研究 [J]. 油气藏评价与开发, 2025, 15(2): 250-256. |
[9] | 张文, 黄红星, 刘莹, 冯延青, 孙伟, 李子玲, 王婧, 赵增平. 鄂尔多斯盆地保德区块煤层气井可采储量与产气特征研究 [J]. 油气藏评价与开发, 2025, 15(2): 257-265. |
[10] | 胡秋嘉, 刘春春, 张建国, 崔新瑞, 王千, 王琪, 李俊, 何珊. 基于机器学习的煤层气井产能预测与压裂参数优化 [J]. 油气藏评价与开发, 2025, 15(2): 266-273. |
[11] | 赵崇胜, 王波, 苟波, 罗鹏飞, 陈国军, 巫国全. 深部煤层气油电混驱压裂设备配置与工艺技术 [J]. 油气藏评价与开发, 2025, 15(2): 292-299. |
[12] | 林伟强, 丛彭, 王红, 魏子琛, 杨云天, 么志强, 曲丽丽, 马立民, 王方鲁. 深层煤层气水平井地质导向技术应用与探讨——以鄂尔多斯盆地神木气田X区块为例 [J]. 油气藏评价与开发, 2025, 15(2): 300-309. |
[13] | 赵海峰, 王成旺, 席悦, 王超伟. 深层煤层水平井压裂动态应力场研究——以鄂尔多斯盆地大宁—吉县区块为例 [J]. 油气藏评价与开发, 2025, 15(2): 310-323. |
[14] | 孔祥伟, 谢昕, 王存武. 基于综合可压指数的煤层气水平井压裂分段参数优化 [J]. 油气藏评价与开发, 2024, 14(6): 925-932. |
[15] | 张兵, 杜丰丰, 张海锋, 魏超. 基于经济效益评价的煤层气开发有利区优选——以鄂尔多斯盆地东缘杨家坡区块为例 [J]. 油气藏评价与开发, 2024, 14(6): 933-941. |
|