油气藏评价与开发 ›› 2025, Vol. 15 ›› Issue (5): 933-946.doi: 10.13809/j.cnki.cn32-1825/te.2025.05.022
• 非烃能源资源 • 上一篇
于朕翔1,2(), 陈雷1,2,3,4(
), 陈鑫5, 刘睿1,2,3, 谭秀成1,2,3,4, 吴帅材1,2, 秦何星1,2, 许强1,2,3,4
收稿日期:
2025-02-14
发布日期:
2025-09-19
出版日期:
2025-10-26
通讯作者:
陈雷(1985—),男,博士,教授,主要从事非常规油气地质、细粒沉积学、层序地层学研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail: cl211@126.com作者简介:
于朕翔(2001—),男,在读硕士研究生,从事非常规油气地质研究工作。地址:四川省成都市新都区新都大道8号,邮政编码:610500。E-mail:814018479@qq.com
基金资助:
YU Zhenxiang1,2(), CHEN Lei1,2,3,4(
), CHEN Xin5, LIU Rui1,2,3, TAN Xiucheng1,2,3,4, WU Shuaicai1,2, QIN Hexing1,2, XU Qiang1,2,3,4
Received:
2025-02-14
Online:
2025-09-19
Published:
2025-10-26
摘要:
氦气具有低沸点、高热导率和强惰性等特点,在低温超导、保护气、制冷、医疗、电子等领域发挥关键作用,被称为“黄金气体”及“气体稀土”。基于稀有气体同位素测试、微量元素测试等方法对川南长宁地区五峰组—龙马溪组氦气资源进行研究。结果表明: 1)长宁地区五峰组—龙马溪组页岩中U、Th含量较高,质量分数最高分别达65.7×10-6、29.6×10-6,具备较强的生氦潜力。样品氦同位素比值(R/Ra≈0.01)及4He/20Ne比值指示,其具有典型壳源氦气特征。背斜构造的前翼、后翼U、Th、K含量相近,但后翼放射性成因氩(40Arrad)含量显著高于前翼,结合4He/40Ar理论值与实测值的差异,推测深部地壳氦气对页岩原生氦产生混合作用,形成壳源近源与远源混合型氦气。2)长宁地区五峰组—龙马溪组页岩氦气主要有2种来源:一是页岩自身从沉积开始至今持续生成的氦气;二是伴随地下流体运移,经由物质交换进入该地层的氦气。3)通过计算得出长宁地区五峰组—龙马溪组页岩在自然演化过程中至今累计生成的氦气量约为4.76×108 m3。基于储层氦气体积分数计算,该地区五峰组—龙马溪组氦气资源量至少为2.86×108 m3。研究成果对进一步开展四川盆地页岩型氦气资源潜力、富集机理与分布规律的研究,实现氦气规模建产,提高氦气保障能力具有重要指导意义。
中图分类号:
YU Zhenxiang,CHEN Lei,CHEN Xin, et al. Helium characteristics and resource potential analysis of Wufeng-Longmaxi Formation in Changning area, southern Sichuan[J]. Petroleum Reservoir Evaluation and Development, 2025, 15(5): 933-946.
表1
四川盆地长宁地区五峰组—龙马溪组富有机质页岩U、Th质量分数"
样品编号 | ω(Th) | ω(U) | 样品编号 | ω(Th) | ω(U) |
---|---|---|---|---|---|
N11-24 | 20.7×10-6 | 7.20×10-6 | N15-29 | 21.5×10-6 | 4.68×10-6 |
N11-22 | 22.8×10-6 | 5.25×10-6 | N15-28 | 13.8×10-6 | 10.10×10-6 |
N11-21 | 29.6×10-6 | 7.24×10-6 | N15-27 | 20.9×10-6 | 5.67×10-6 |
N11-20 | 25.2×10-6 | 7.60×10-6 | N15-26 | 20.9×10-6 | 6.68×10-6 |
N11-19 | 29.2×10-6 | 7.41×10-6 | N15-25 | 18.7×10-6 | 6.09×10-6 |
N11-18 | 20.2×10-6 | 11.90×10-6 | N15-24 | 20.2×10-6 | 7.18×10-6 |
N11-17 | 17.4×10-6 | 23.50×10-6 | N15-23 | 18.9×10-6 | 7.56×10-6 |
N11-16 | 15.8×10-6 | 15.90×10-6 | N15-22 | 22.0×10-6 | 8.25×10-6 |
N11-15 | 13.5×10-6 | 17.80×10-6 | N15-21 | 20.5×10-6 | 7.88×10-6 |
N11-14 | 13.5×10-6 | 19.00×10-6 | N15-20 | 21.1×10-6 | 7.88×10-6 |
N11-13 | 15.9×10-6 | 33.80×10-6 | N15-19 | 17.4×10-6 | 8.68×10-6 |
N11-12 | 9.1×10-6 | 18.90×10-6 | N15-18 | 16.3×10-6 | 12.60×10-6 |
N11-11 | 16.0×10-6 | 35.90×10-6 | N15-11 | 12.5×10-6 | 13.00×10-6 |
N11-10 | 7.5×10-6 | 23.50×10-6 | N15-10 | 13.6×10-6 | 16.20×10-6 |
N11-9 | 11.2×10-6 | 65.70×10⁻⁶ | N15-9 | 14.9×10-6 | 16.90×10-6 |
N11-6 | 11.5×10-6 | 19.40×10-6 | N15-5 | 10.0×10-6 | 16.20×10-6 |
N11-2 | 18.9×10-6 | 11.90×10-6 | N15-2 | 18.5×10-6 | 29.60×10-6 |
N15-35 | 20.2×10-6 | 5.38×10-6 | Y02-15 | 19.1×10-6 | 8.70×10-6 |
N15-34 | 19.6×10-6 | 4.33×10-6 | Y02-14 | 28.0×10-6 | 6.62×10-6 |
N15-33 | 20.5×10⁻⁶ | 4.49×10⁻⁶ | Y02-13 | 21.3×10-6 | 10.90×10-6 |
N15-32 | 20.2×10-6 | 5.10×10-6 | Y02-9 | 14.6×10-6 | 13.60×10-6 |
N15-31 | 22.8×10-6 | 5.63×10-6 | Y02-8 | 10.3×10-6 | 18.40×10-6 |
N15-30 | 21.5×10-6 | 5.25×10-6 | Y02-5 | 24.9×10-6 | 14.80×10-6 |
表2
四川盆地长宁地区五峰组—龙马溪组页岩气组分体积分数测试结果"
样品号 | 体积分数/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
He | H2 | N2 | CO2 | CH4 | C2H6 | C3H8 | iC4H10 | nC4H10 | iC5H12 | nC5H12 | |
N1-1 | 0.02 | 0.01 | 0.24 | 0.54 | 98.72 | 0.47 | 0.01 | 0 | 0 | 0 | 0 |
N1-2 | 0.02 | 0.01 | 0.20 | 0.47 | 98.83 | 0.46 | 0.01 | 0 | 0 | 0 | 0 |
N1-3 | 0.02 | 0 | 0.19 | 0.42 | 98.91 | 0.45 | 0.01 | 0 | 0 | 0 | 0 |
N1-4 | 0.02 | 0 | 0.22 | 0.37 | 98.92 | 0.45 | 0.01 | 0 | 0 | 0 | 0 |
N1-5 | 0.02 | 0 | 0.31 | 0.29 | 98.93 | 0.44 | 0.01 | 0 | 0 | 0 | 0 |
N1-6 | 0.02 | 0 | 0.25 | 0.37 | 98.89 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-7 | 0.02 | 0 | 0.12 | 0.30 | 99.11 | 0.43 | 0.02 | 0 | 0 | 0 | 0 |
N1-8 | 0.02 | 0 | 0.17 | 0.29 | 99.06 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-9 | 0.02 | 0 | 0.23 | 0.30 | 98.99 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-10 | 0.02 | 0 | 0.20 | 0.29 | 99.03 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-11 | 0.02 | 0 | 0.13 | 0.26 | 99.13 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-12 | 0.02 | 0 | 0.15 | 0.26 | 99.10 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-13 | 0.02 | 0 | 0.16 | 0.27 | 99.09 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-14 | 0.02 | 0 | 0.32 | 0.26 | 98.93 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-15 | 0.02 | 0 | 0.14 | 0.22 | 99.16 | 0.44 | 0.03 | 0 | 0 | 0 | 0 |
N1-16 | 0.02 | 0 | 0.19 | 0.34 | 98.99 | 0.44 | 0.02 | 0 | 0 | 0 | 0 |
N1-17 | 0.02 | 0 | 0.41 | 0.52 | 98.51 | 0.44 | 0.03 | 0.01 | 0.01 | 0.01 | 0.01 |
N209-1 | 0.15 | 0 | 23.68 | 0.19 | 76.88 | 0.16 | 0.02 | 0.01 | 0.01 | 0 | 0 |
N209-2 | 0.08 | 0.80 | 23.68 | 0.24 | 74.61 | 0.20 | 0.02 | 0.01 | 0 | 0 | 0 |
N10 | 0.06 | 0.03 | 2.12 | 0.35 | 97.22 | 0.17 | 0.01 | 0 | 0 | 0 | 0 |
N24 | 0.10 | 0 | 0.47 | 0.18 | 98.84 | 0.40 | 0.01 | 0 | 0 | 0 | 0 |
N27 | 0.03 | 0 | 0.47 | 0.44 | 98.75 | 0.30 | 0.01 | 0 | 0 | 0 | 0 |
表3
四川盆地长宁地区五峰组—龙马溪组页岩气稀有气体同位素测试结果(据参考文献[49]修改)"
井名 | 3He/4He (±1σ) | 4He (±1σ) | 20Ne (±1σ) | 36Ar (±1σ) | 4Herad (±1σ) | 40Arrad (±1σ) | δ13C1/‰ | δ13C2/‰ | |
---|---|---|---|---|---|---|---|---|---|
N16 | 10.2×10-3 (4) | 1.80×10-4 (3) | 0.82×10-8 (1) | 3.16×10-8 (4) | 1.80×10-4 (3) | 2.44×10-5 (3) | -28.1 | -33.6 | -147 |
H10 | 10.5×10-3 (5) | 1.95×10-4 (3) | 2.36×10-8 (3) | 6.32×10-8 (8) | 1.95×10-4 (3) | 1.53×10-5 (3) | -28.0 | -33.9 | -145 |
H16 | 10.0×10-3 (4) | 1.86×10-4 (3) | 2.48×10-8 (3) | 6.87×10-8 (9) | 1.86×10-4 (3) | 2.02×10-5 (3) | -28.8 | -34.4 | -146 |
H24 | 10.4×10-3 (4) | 1.54×10-4 (2) | 4.77×10-8 (6) | 11.20×10-8 (2) | 1.54×10-4 (2) | 1.78×10-5 (2) | -28.6 | -34.1 | -146 |
H6 | 9.6×10-3 (2) | 1.89×10-4 (3) | 5.85×10-8 (8) | 13.70×10-8 (2) | 1.89×10-4 (3) | 2.14×10-5 (3) | -27.8 | -34.1 | -149 |
N17 | 10.3×10-3 (3) | 5.07×10-4 (8) | 1.89×10-8 (2) | 6.66×10-8 (9) | 5.07×10-4 (8) | 7.07×10-5 (9) | |||
H13 | 10.6×10-3 (3) | 1.64×10-4 (2) | 1.01×10-8 (1) | 3.49×10-8 (5) | 1.64×10-4 (2) | 1.97×10-5 (3) | -28.5 | -34.3 | -153 |
N9-h17 | 9.5×10-3 (3) | 2.01×10-4 (3) | 2.31×10-8 (3) | 6.14×10-8 (8) | 2.01×10-4 (3) | 2.02×10-5 (3) | -27.4 | -33.6 | -150 |
N9-h8 | 9.4×10-3 (3) | 1.86×10-4 (3) | 1.95×10-8 (3) | 5.72×10-8 (7) | 1.86×10-4 (3) | 2.35×10-5 (3) | -27.6 | -32.9 | -148 |
H25 | 9.3×10-3 (4) | 1.66×10-4 (3) | 1.56×10-8 (2) | 4.71×10-8 (6) | 1.66×10-4 (3) | 2.13×10-5 (3) | -27.4 | -32.8 | -148 |
N13 | 10.2×10-3 (4) | 1.68×10-4 (3) | 1.63×10-8 (2) | 4.85×10-8 (6) | 1.68×10-4 (3) | 2.11×10-5 (3) | -27.8 | -33.5 | -148 |
H8 | 9.3×10-3 (2) | 1.79×10-4 (3) | 1.90×10-8 (2) | 7.22×10-8 (9) | 1.80×10-4 (3) | 2.83×10-5 (4) | -27.3 | -32.9 | -152 |
表4
四川盆地长宁地区五峰组—龙马溪组页岩气稀有气体同位素分析(据参考文献[70]修改)"
井名 | 4Herad/40Arrad | (40Ar/36Ar)predicted | 40Ar/36Ar(±1σ) | 成藏时间/Ma |
---|---|---|---|---|
N16 | 7.4 | 524.5 | 1 071.0(4) | 34.82 |
H10 | 12.8 | 420.9 | 540.0(4) | 28.77 |
H16 | 9.3 | 406.0 | 590.0(1) | 25.31 |
H24 | 8.6 | 353.2 | 458.0(1) | 8.38 |
H6 | 8.8 | 353.2 | 455.0(1) | 12.86 |
N17 | 7.2 | 600.5 | 1 360.0(2) | 46.38 |
H13 | 8.3 | 485.0 | 864.0(3) | 43.86 |
N9-h17 | 9.9 | 428.4 | 628.0(1) | 30.67 |
N9-h8 | 7.9 | 427.5 | 710.0(2) | 30.45 |
H25 | 7.8 | 438.4 | 751.0(2) | 33.02 |
N13 | 8.0 | 436.0 | 733.0(2) | 32.37 |
H8 | 6.4 | 397.5 | 690.0(1) | 23.23 |
[1] | 张哲, 王春燕, 王秋晨, 等. 浅谈中国氦气供应链技术壁垒与发展方向[J]. 油气与新能源, 2022, 34(2): 14-19. |
ZHANG Zhe, WANG Chunyan, WANG Qiuchen, et al. Barries and development directions of helium supply chain in China[J]. Petroleum and New Energy, 2022, 34(2): 14-19. | |
[2] | WANG X F, LIU Q Y, LIU W H, et al. Helium accumulation in natural gas systems in Chinese sedimentary basins[J]. Marine and Petroleum Geology, 2023, 150: 106155. |
[3] | 贾凌霄, 马冰, 王欢, 等. 全球氦气勘探开发进展与利用现状[J]. 中国地质, 2022, 49(5): 1427-1437. |
JIA Lingxiao, MA Bing, WANG Huan, et al. Progress and utilization status of global helium exploration and development[J]. Geology in China, 2022, 49(5): 1427-1437. | |
[4] | 张宇轩, 吕鹏瑞, 牛亚卓, 等. 全球氦气资源成藏背景、地质特征与产能格局初探[J]. 西北地质, 2022, 55(4): 11-32. |
ZHANG Yuxuan, Pengrui LYU, NIU Yazhuo, et al. Preliminary study on the geological characteristics, resource potential and production capacity pattern of global helium resources[J]. Northwestern Geology, 2022, 55(4): 11-32. | |
[5] | 张宝收, 张本健, 汪华, 等. [J]. 四川盆地金秋气田: 一个典型以中生界沉积岩为氦源岩的含氦-富氦气田[J]. 石油与天然气地质, 2024, 45(1): 185-199. |
ZHANG Baoshou, ZHANG Benjian, WANG Hua, et al. The Jinqiu gas field in the Sichuan Basin: A typical helium-bearing to helium-richgas field with the Mesozoic sedimentary rocks as helium source rocks[J]. Oil & Gas Geology, 2024, 45(1): 185-199. | |
[6] | 李玉宏, 李济远, 周俊林, 等. 氦气资源评价相关问题认识与进展[J]. 地球科学与环境学报, 2022, 44(3): 363-373. |
LI Yuhong, LI Jiyuan, ZHOU Junlin, et al. Research progress and new views on evaluation of helium resources[J]. Journal of Earth Sciences and Environment, 2022, 44(3): 363-373. | |
[7] |
张驰, 关平, 张济华, 等. 中国氦气资源分区特征与成藏模式[J]. 天然气地球科学, 2023, 34(4): 656-671.
doi: 10.11764/j.issn.1672-1926.2022.10.016 |
ZHANG Chi, GUAN Ping, ZHANG Jihua, et al. Zoning characteristics of helium resources and helium accumulation model in China[J]. Natural Gas Geoscience, 2023, 34(4): 656-671.
doi: 10.11764/j.issn.1672-1926.2022.10.016 |
|
[8] | 许光, 李玉宏, 王宗起, 等. 我国氦气资源调查评价进展[J]. 地质学报, 2023, 97(5): 1711-1716. |
XU Guang, LI Yuhong, WANG Zongqi, et al. Progress of investigation and evaluation of helium resources in China[J]. Acta Geologica Sinica, 2023, 97(5): 1711-1716. | |
[9] | 陶小晚, 李建忠, 赵力彬, 等. 我国氦气资源现状及首个特大型富氦储量的发现: 和田河气田[J]. 地球科学, 2019, 44(3): 1024-1041. |
TAO Xiaowan, LI Jianzhong, ZHAO Libin, et al. Helium resources and discovery of first supergiant helium reserve in China: Hetianhe gas field[J]. Earth Science, 2019, 44(3): 1024-1041. | |
[10] | BRENNAN S T, EAST J A, DENNEN K O, et al. Dataset of helium concentrations in United States wells[R]. Reston: U.S. Geological Survey, 2021. |
[11] | BROWN A. Origin of helium and nitrogen in the panhandle-hugoton field of Texas, Oklahoma, and Kansas, United States[J]. AAPG Bulletin, 2019, 103(2): 369-403. |
[12] | TAVAKOLI V, RAHIMPOUR-BONAB H, ESRAFILI-DIZAJI B. Diagenetic controlled reservoir quality of South Pars gas field, an integrated approach[J]. Comptes Rendus Geoscience, 2011, 343(1): 55-71. |
[13] | RAPATSKAYA L A, TONKIKH M E, USTYUZHANIN A O. Natural reservoir as a geological body for storing helium reserves[J]. IOP Conference Series: Earth and Environmental Science, 2020, 408(1): 012060. |
[14] | 何发岐, 王付斌, 王杰, 等. 鄂尔多斯盆地东胜气田氦气分布规律及特大型富氦气田的发现[J]. 石油实验地质, 2022, 44(1): 1-10. |
HE Faqi, WANG Fubin, WANG Jie, et al. Helium distribution of Dongsheng gas field in Ordos Basin and discovery of a super large helium-rich gas field[J]. Petroleum Geology & Experiment, 2022, 44(1): 1-10. | |
[15] | 彭威龙, 刘全有, 张英, 等. 中国首个特大致密砂岩型(烃类)富氦气田: 鄂尔多斯盆地东胜气田特征[J]. 中国科学: 地球科学, 2022, 52(6): 1078-1085. |
PENG Weilong, LIU Quanyou, ZHANG Ying, et al. Characteristics of Dongsheng gas field in Ordos Basin, the first super tight sandstone-type (hydrocarbon) helium-rich gas field in China[J]. Scientia Sinica (Terrae), 2022, 52(6): 1078-1085. | |
[16] |
范立勇, 单长安, 李进步, 等. 基于磁力资料的鄂尔多斯盆地氦气分布规律[J]. 天然气地球科学, 2023, 34(10): 1780-1789.
doi: 10.11764/j.issn.1672-1926.2023.06.002 |
FAN Liyong, SHAN Chang’an, LI Jinbu, et al. Distribution of helium resources in Ordos Basin based on magnetic data[J]. Natural Gas Geoscience, 2023, 34(10): 1780-1789.
doi: 10.11764/j.issn.1672-1926.2023.06.002 |
|
[17] | 刘超, 孙蓓蕾, 曾凡桂, 等. 鄂尔多斯盆地东缘石西区块含氦天然气的发现及成因初探[J]. 煤炭学报, 2021, 46(4): 1280-1287. |
LIU Chao, SUN Beilei, ZENG Fangui, et al. Discovery and origin of helium-rich gas on the Shixi area, eastern margin of the Ordos Basin[J]. Journal of China Coal Society, 2021, 46(4): 1280-1287. | |
[18] |
韩元红, 罗厚勇, 薛宇泽, 等. 渭河盆地地热水伴生天然气成因及氦气富集机理[J]. 天然气地球科学, 2022, 33(2): 277-287.
doi: 10.11764/j.issn.1672-1926.2021.09.009 |
HAN Yuanhong, LUO Houyong, XUE Yuze, et al. Genesis and helium enrichment mechanism of geothermal water-associated gas in Weihe Basin[J]. Natural Gas Geoscience, 2022, 33(2): 277-287.
doi: 10.11764/j.issn.1672-1926.2021.09.009 |
|
[19] | LIU Q Y, JIN Z J, CHEN J F, et al. Origin of nitrogen molecules in natural gas and implications for the high risk of N2 exploration in Tarim Basin, NW China[J]. Journal of Petroleum Science and Engineering, 2012, 81: 112-121. |
[20] |
杨春, 陶士振, 侯连华, 等. 松辽盆地火山岩储层天然气藏He同位素组成累积效应[J]. 天然气地球科学, 2014, 25(1): 109-115.
doi: 10.11764/j.issn.1672-1926.2014.01.109 |
YANG Chun, TAO Shizhen, HOU Lianhua, et al. Accumulative effect of helium isotope in gas volcanic reservoirs in Songliao Basin[J]. Natural Gas Geoscience, 2014, 25(1): 109-115.
doi: 10.11764/j.issn.1672-1926.2014.01.109 |
|
[21] | 刘全有, 戴金星, 金之钧, 等. 松辽盆地庆深气田异常氢同位素组成成因研究[J]. 地球化学, 2014, 43(5): 460-468. |
LIU Quanyou, DAI Jinxing, JIN Zhijun, et al. Abnormal hydrogen isotopes of natural gases from the Qingshen Gas Field, the Songliao Basin[J]. Geochimica, 2014, 43(5): 460-468. | |
[22] | 戴春森, 戴金星, 宋岩, 等. 渤海湾盆地黄骅拗陷天然气中幔源氦[J]. 南京大学学报(自然科学版), 1995, 31(2): 272-280. |
DAI Chunsen, DAI Jinxing, SONG Yan, et al. Mantle helium of natural gases from Huanghua Depression in Bohai gulf basin[J]. Journal of Nanjing University (Natural Sciences), 1995, 31(2): 272-280. | |
[23] |
陈新军, 陈刚, 边瑞康, 等. 四川盆地涪陵页岩气田氦气资源潜力与成因机理[J]. 天然气地球科学, 2023, 34(3): 469-476.
doi: 10.11764/j.issn.1672-1926.2022.07.011 |
CHEN Xinjun, CHEN Gang, BIAN Ruikang, et al. The helium resource potential and genesis mechanism in Fuling shale gas field, Sichuan Basin[J]. Natural Gas Geoscience, 2023, 34(3): 469-476.
doi: 10.11764/j.issn.1672-1926.2022.07.011 |
|
[24] | 魏国齐, 王东良, 王晓波, 等. 四川盆地高石梯—磨溪大气田稀有气体特征[J]. 石油勘探与开发, 2014, 41(5): 533-538. |
WEI Guoqi, WANG Dongliang, WANG Xiaobo, et al. Characteristics of noble gases in the large Gaoshiti-Moxi gas field in Sichuan Basin[J]. Petroleum Exploration and Development, 2014, 41(5): 533-538. | |
[25] | CAO C H, ZHANG M J, TANG Q Y, et al. Noble gas isotopic variations and geological implication of Longmaxi shale gas in Sichuan Basin, China[J]. Marine and Petroleum Geology, 2018, 89(1): 38-46. |
[26] | CHEN Lei, CHEN X, TAN X C, et al. Factors controlling organic matter accumulation in the Longmaxi Formation shale, Changning area, South Sichuan Basin[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9(1): 89. |
[27] |
蒲泊伶, 蒋有录, 王毅, 等. 四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析[J]. 石油学报, 2010, 31(2): 225-230.
doi: 10.7623/syxb201002008 |
PU Boling, JIANG Youlu, WANG Yi, et al. Reservoir-forming conditions and favorable exploration zones of shale gas in Lower Silurian Longmaxi Formation of Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(2): 225-230.
doi: 10.7623/syxb201002008 |
|
[28] | 邹才能, 董大忠, 王玉满, 等. 中国页岩气特征、挑战及前景(一)[J]. 石油勘探与开发, 2015, 42(6): 689-701. |
ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: Characteristics, challenges and prospects(Ⅰ)[J]. Petroleum Exploration and Development, 2015, 42(6): 689-701. | |
[29] | CHEN L, XIONG M, TAN X C, et al. Coupling mechanism between sea level changes and pore heterogeneity of marine shale reservoirs driven by astronomical orbital cycles: Lower Silurian Longmaxi shale in the Upper Yangtze area, South China[J]. Marine and Petroleum Geology, 2024, 160: 106590. |
[30] | 杨跃明, 陈玉龙, 刘燊阳, 等. 四川盆地及其周缘页岩气勘探开发现状、潜力与展望[J]. 天然气工业, 2021, 41(1): 42-58. |
YANG Yueming, CHEN Yulong, LIU Shenyang, et al. Status, potential and prospect of shale gas exploration and development in the Sichuan Basin and its periphery[J]. Natural Gas Industry, 2021, 41(1): 42-58. | |
[31] | CHEN L, CHEN X, TAN X C, et al. Pyrite characteristics and its environmental significance in marine shale: A case study from the Middle Ordovician Wufeng-lower Silurian Longmaxi Formation in the Southeast Sichuan Basin, SW China[J]. Minerals, 2022(7), 12: 830. |
[32] | HE W G, ZHOU J X, YUAN K. Deformation evolution of eastern Sichuan-Xuefeng fold-thrust belt in South China: Insights from analogue modelling[J]. Journal of Structural Geology, 2018, 109: 74-85. |
[33] |
刘凯旋, 陈践发, 付娆, 等. 富氦天然气藏成藏特征及主控因素[J]. 石油学报, 2022, 43(11): 1652-1663.
doi: 10.7623/syxb202211012 |
LIU Kaixuan, CHEN Jianfa, FU Rao, et al. Accumulation characteristics and main controlling factors of helium-rich gas reservoirs[J]. Acta Petrolei Sinica, 2022, 43(11): 1652-1663.
doi: 10.7623/syxb202211012 |
|
[34] | PENG W L, LIU Q Y, ZHANG Y, et al. The first extra-large helium-rich gas field identified in a tight sandstone of the Dongsheng Gas Field, Ordos Basin, China[J]. Science China(Earth Sciences), 2022, 65(5): 874-881. |
[35] |
王杰, 贾会冲, 陶成, 等. 鄂尔多斯盆地杭锦旗地区东胜气田氦气成因来源及富集规律[J]. 天然气地球科学, 2023, 34 (4): 566-575.
doi: 10.11764/j.issn.1672-1926.2022.11.004 |
WANG Jie, JIA Huichong, TAO Cheng, et al. Source and enrichment regularity of helium in Dongsheng Gas Field of Hangjinqi area, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(4): 566-575.
doi: 10.11764/j.issn.1672-1926.2022.11.004 |
|
[36] | 辛志源, 陈践发, 王杰, 等. 川东南地区不同构造样式页岩气中氦气差异富集机理[J]. 煤田地质与勘探, 2025, 53(6): 70-83. |
XIN Zhiyuan, CHEN Jianfa, WANG Jie, et al. Mechanisms underlying differential helium enrichment in shale gas of varying structural styles in the southeastern Sichuan Basin[J]. Coal Geology & Exploration, 2025, 53(6): 70-83. | |
[37] | 蒙炳坤, 周世新, 李靖, 等. 上扬子地区不同类型岩石生氦潜力评价及泥页岩氦气开采条件理论计算[J]. 矿物岩石, 2021, 41(4): 102-113. |
MENG Bingkun, ZHOU Shixin, LI Jing, et al. Helium potential evaluation of different types of rocks in the Upper Yangtze region and theoretical calculation of helium recovery conditions for shale in Upper Yangtze region[J]. Mineralogy and Petrology, 2021, 41 (4): 102-113. | |
[38] | 秦胜飞, 陶刚, 罗鑫, 等. 氦气富集与天然气成藏差异、勘探误区[J]. 天然气工业, 2023, 43(12): 138-151. |
QIN Shengfei, TAO Gang, LUO Xin, et al. Difference between helium enrichment and natural gas accumulation and misunderstandings in helium exploration[J]. Natural Gas Industry, 2023, 43(12): 138-151. | |
[39] | 戴金星, 裴锡古, 戚厚发. 中国天然气地质学(卷一)[M]. 北京: 石油工业出版社, 1992. |
DAI Jinxing, PEI Xigu, QI Houfa. Natural Gas Geology in China: Vol. 1[M]. Beijing: Petroleum Industry Press, 1992. | |
[40] |
蒙炳坤, 李靖, 周世新, 等. 黔南坳陷震旦系—寒武系页岩解析气中氦气成因及来源[J]. 天然气地球科学, 2023, 34 (4): 647-655.
doi: 10.11764/j.issn.1672-1926.2023.02.011 |
MENG Bingkun, LI Jing, ZHOU Shixin, et al. Origin and source of helium in the resolved gas of Sinian-Cambrian shale in the Qiannan Depression[J]. Natural Gas Geoscience, 2023, 34(4): 647-655.
doi: 10.11764/j.issn.1672-1926.2023.02.011 |
|
[41] | OZIMA M, PODOSEK F A. Noble Gas Geochemistry, 2nd edition[M]. New York: Cambridge University Press, 2002. |
[42] | GRAHAM D W. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 247-317. |
[43] | OXBURGH E R, O’NIONS R K, HILL R I. Helium isotopes in sedimentary basins[J]. Nature, 1986, 324: 632-635. |
[44] |
张朝鲲, 弓明月, 田伟, 等. 塔里木盆地雅克拉地区氦气资源评价与成藏模式[J]. 天然气地球科学, 2023, 34(11): 1993-2008.
doi: 10.11764/j.issn.1672-1926.2023.08.008 |
ZHANG Chaokun, GONG Mingyue, TIAN Wei, et al. Helium resource evaluation and enrichment model in Yakela area, Tarim Basin[J]. Natural Gas Geoscience, 2023, 34(11): 1993-2008.
doi: 10.11764/j.issn.1672-1926.2023.08.008 |
|
[45] | 陈更生, 石学文, 刘勇, 等. 四川盆地南部地区五峰组—龙马溪组深层页岩气富集控制因素新认识[J]. 天然气工业, 2024, 44(1): 58-71. |
CHEN Gengsheng, SHI Xuewen, LIU Yong, et al. New understandings of the factors controlling of deep shale gas enrichment in the Wufeng Formation-Longmaxi Formation of the southern Sichuan Basin[J]. Natural Gas Industry, 2024, 44(1): 58-71. | |
[46] |
秦胜飞, 周国晓, 李济远, 等. 氦气与氮气富集耦合作用及其重要意义[J]. 天然气地球科学, 2023, 34(11): 1981-1992.
doi: 10.11764/j.issn.1672-1926.2023.10.020 |
QIN Shengfei, ZHOU Guoxiao, LI Jiyuan, et al. The coupling effect of helium and nitrogen enrichment and its significance[J]. Natural Gas Geoscience, 2023, 34(11): 1981-1992.
doi: 10.11764/j.issn.1672-1926.2023.10.020 |
|
[47] | 冯子齐, 刘丹, 黄士鹏, 等. 四川盆地长宁地区志留系页岩气碳同位素组成[J]. 石油勘探与开发, 2016, 43(5): 705-713. |
FENG Ziqi, LIU Dan, HUANG Shipeng, et al. Carbon isotopic composition of shale gas in the Silurian Longmaxi Formation of the Changning area, Sichuan Basin[J]. Petroleum Exploration and Development, 2016, 43 (5): 705-713. | |
[48] | WEN T, CASTRO M C, NICOT J P, et al. Characterizing the noble gas isotopic composition of the Barnett shale and strawn group and constraining the source of stray gas in the trinity aquifer, north-central Texas[J]. Environmental Science & Technology, 2017, 51(11): 6533-6541. |
[49] | LIU R, WEN T, AMALBERTI J, et al. The dichotomy in noble gas signatures linked to tectonic deformation in Wufeng-Longmaxi Shale, Sichuan Basin [J]. Chemical Geology, 2021, 581: 120412. |
[50] | BALLENTINE C J, O’NIONS R K, OXBURGH E R, et al. Rare gas constraints on hydrocarbon accumulation, crustal degassing and groundwater flow in the Pannonian Basin[J]. Earth and Planetary Science Letters, 1991, 105(1/2/3): 229-246. |
[51] | TORGERSEN T. Controls on pore-fluid concentration of 4He and 222Rn and the calculation of 4He/222Rn ages[J]. Journal of Geochemical Exploration, 1980, 13(1): 57-75. |
[52] | LIU K X, CHEN J F, TANG S Q, et al. Differential enrichment mechanism of helium in the Jinqiu gas field of Sichuan Basin, China[J]. Marine and Petroleum Geology, 2024, 167, 106970. |
[53] |
高宇, 刘全有, 吴小奇, 等. 鄂尔多斯盆地东胜与大牛地气田壳源氦气成藏差异性[J]. 天然气地球科学, 2023, 34 (10): 1790-1800.
doi: 10.11764/j.issn.1672-1926.2023.06.003 |
GAO Yu, LIU Quanyou, WU Xiaoqi, et al. Research on the difference of crustal helium accumulation in Dongsheng and Daniudi gas fields, Ordos Basin[J]. Natural Gas Geoscience, 2023, 34(10): 1790-1800.
doi: 10.11764/j.issn.1672-1926.2023.06.003 |
|
[54] | 陈新军, 丁一, 易晶晶, 等. 氦气资源的分类、特征及富集主控因素分析[J]. 石油实验地质, 2023, 45(1): 41-48. |
CHEN Xinjun, DING Yi, YI Jingjing, et al. Classified characteristics of helium gas resources and controlling factors for the enrichment[J]. Petroleum Geology & Experiment, 2023, 45(1): 41-48. | |
[55] | PEI L X, WANG X F, LIU W H, et al. Insight into the mechanism of helium enrichment in natural gas from the Bohai Bay basin, China: Chemical and isotopic composition perspectives[J]. Gas Science and Engineering, 2024, 125: 205324. |
[56] | 尤兵, 陈践发, 肖洪, 等. 富氦天然气藏氦源岩特征及关键评价参数[J]. 天然气工业, 2022, 42(11): 141-154. |
YOU Bing, CHEN Jianfa, XIAO Hong, et al. Characteristics and key evaluation parameters of helium source rocks in helium-rich natural gas reservoirs[J]. Natural Gas Industry, 2022, 42(11): 141-154. | |
[57] | HUANG Y, HOU M Q, LIU H. A first-principles study of helium diffusion in aragonite under high pressure up to 40 GPa[J], Geoscience Frontiers, 2025, 16(1): 101931. |
[58] | 赵栋, 王晓锋, 刘文汇, 等. 孔隙水中氦气溶解与脱溶量估算方法及其地质意义[J]. 天然气工业, 2023, 43(2): 155-164. |
ZHAO Dong, WANG Xiaofeng, LIU Wenhui, et al. Calculation method and geological significance of dissolved and exsolved helium in pore water[J]. Natural Gas Industry, 2023, 43(2): 155-164. | |
[59] |
刘全有, 朱东亚, 孟庆强, 等. 地球多层圈有机—无机相互作用的资源效应[J]. 天然气地球科学, 2024, 35(5): 741-762.
doi: 10.11764/j.issn.1672-1926.2024.04.001 |
LIU Quanyou, ZHU Dongya, MENG Qingqiang, et al. Organic-inorganic interactions in the Earth’s multi-spheres and resources effects[J]. Natural Gas Geoscience, 2024, 35(5): 741-762.
doi: 10.11764/j.issn.1672-1926.2024.04.001 |
|
[60] |
陈燕燕, 陶士振, 杨秀春, 等. 页岩气和煤层气中氦气的地球化学特征和富集规律[J]. 天然气地球科学, 2023, 34(4): 684-696.
doi: 10.11764/j.issn.1672-1926.2022.12.004 |
CHEN Yanyan, TAO Shizhen, YANG Xiuchun, et al. The geochemical characteristics and enrichment of helium in shale gas and coalbed methane[J]. Natural Gas Geoscience, 2023, 34(4): 684-696.
doi: 10.11764/j.issn.1672-1926.2022.12.004 |
|
[61] | QIN S F, ZHOU G X, LI W, et al. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin[J]. Natural Gas Industry B, 2016, 3(1): 37-44. |
[62] | LIU Q Y, LI P P, ZHU D Y, et al. Helium resource in the petroliferous basins in China and its development prospects[J]. Cell Reports Physical Science, 2024, 5(6): 102031. |
[63] | SCHLEGEL M E, ZHENG Z, MCINTOSH J C, et al. Constraining the timing of microbial methane generation in an organic-rich shale using noble gases, Illinois Basin, USA[J]. Chemical Geology, 2011, 287(1-2): 27-40. |
[64] | BALLENTINE C J, BURNARD P G. Production, release and transport of noble gases in the continental crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 481-538. |
[65] | LIU D, XIONG W, ZHANG X W, et al. Hydrogeochemistry and indicators of flowback and produced water from wells that are hydraulically fractured with recycled wastewater: A case study of the Changning gas field in the Sichuan Basin[J]. Applied Geochemistry, 2024, 162: 105897. |
[66] | WANG X F, LIU W H, LI X B, et al. Radiogenic helium concentration and isotope variations in crustal gas pools from Sichuan Basin, China[J]. Applied Geochemistry, 2020, 117: 104586. |
[67] | 刘凯旋, 陈践发, 付娆, 等. 威远气田富氦天然气分布规律及控制因素探讨[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 12-21. |
LIU Kaixuan, CHEN Jianfa, FU Rao, et al. Discussion on distribution law and controlling factors of helium-rich natural gas in Weiyuan gas field[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(4): 12-21. | |
[68] | 黄文明. 四川盆地下古生界油气地质条件及勘探前景[D]. 成都: 成都理工大学, 2011. |
HUANG Wenming. Petroleum geological conditions and exploration prospects of lower Paleozoic in Sichuan basin[D]. Chengdu: Chengdu University of Technology, 2011. | |
[69] | 邓宾. 四川盆地中—新生代盆—山结构与油气分布[D]. 成都理工大学, 2013. |
DENG Bin. Meso-Cenozoic architecture of basin-mountain system in the Sichuan basin and its gas distribution[D]. Chengdu: Chengdu University of Technology, 2013. | |
[70] | BALLENTINE C J, BURGESS R, MARTY B. Tracing fluid origin, transport and interaction in the crust[J]. Reviews in Mineralogy and Geochemistry, 2002, 47(1): 539-614. |
[71] |
陶士振, 陈悦, 杨怡青. 中国氦气资源及区带分类体系、控藏要素有效性与富集模式[J]. 天然气地球科学, 2024, 35(5): 869-889.
doi: 10.11764/j.issn.1672-1926.2024.04.012 |
TAO Shizhen, CHEN Yue, YANG Yiqing. Helium resource and play classification systems, effective reservoir control elements and enrichment patterns in China[J]. Natural Gas Geoscience, 2024, 35(5): 869-889.
doi: 10.11764/j.issn.1672-1926.2024.04.012 |
|
[72] |
秦胜飞, 李济远, 梁传国, 等. 中国中西部富氦气藏氦气富集机理: 古老地层水脱氦富集[J]. 天然气地球科学, 2022, 33(8): 1203-1217.
doi: 10.11764/j.issn.1672-1926.2022.03.015 |
QIN Shengfei, LI Jiyuan, LIANG Chuanguo, et al. Helium enrichment mechanism of helium rich gas reservoirs in central and western China: Degassing and accumulation from old formation water[J]. Natural Gas Geoscience, 2022, 33(8): 1203-1217.
doi: 10.11764/j.issn.1672-1926.2022.03.015 |
|
[73] | 仵宗涛, 刘兴旺, 李孝甫, 等. 稀有气体同位素在四川盆地元坝气藏气源对比中的应用[J]. 天然气地球科学, 2017, 28(7): 1072-1077. |
WU Zongtao, LIU Xingwang, LI Xiaofu, et al. The application of noble gas isotope in gas-source correlation of Yuanba reservoir, Sichuan Basin[J]. Natural Gas Geoscience, 2017, 28(7): 1072-1077. | |
[74] | DONG J H, CHEN L, YANG Y, et al. Development characteristics and distribution patterns of fractures in the Wufeng-Longmaxi Formation shale in the southwestern Sichuan Basin, China[J]. Lithosphere, 2022, 2022(Special 13): 2454227. |
[75] | 姜磊. 强改造作用下川南下古生界页岩气保存条件研究[D]. 成都: 成都理工大学, 2019. |
JIANG Lei. Research on the preservation conditions of lower Paleozoic shale gas in southern Sichuan under strong transformation[D]. Chengdu: Chengdu University of Technology, 2019. | |
[76] | 李双建, 李建明, 周雁, 等. 四川盆地东南缘中新生代构造隆升的裂变径迹证据[J]. 岩石矿物学杂志, 2011, 30(2): 225-233. |
LI Shuangjian, LI Jianming, ZHOU Yan, et al. Fission track evidence for Mesozoic-Cenozoic uplifting in the southeastern margin of Sichuan basin[J]. Acta Petrologica et Mineralogica, 2011, 30(2), 225-233. | |
[77] | LIU R, HAO F, ENGELDER T, et al. Influence of tectonic exhumation on porosity of Wufeng-Longmaxi shale in the Fuling gas field of the eastern Sichuan Basin, China[J]. AAPG Bulletin, 2020, 104(4): 939-959. |
[78] | CHEN L, LU Y C, LI J Q, et al. Comparative study on the Lower Silurian Longmaxi marine shale in the Jiaoshiba shale gas field and the Pengshui area in the southeast Sichuan Basin, China[J]. Geosciences Journal, 2020, 24(1): 61-71. |
[79] | 刘文平, 周政, 吴娟, 等. 川南盆地长宁页岩气田五峰组—龙马溪组成藏动力学过程及其意义[J]. 南京大学学报(自然科学), 2020, 56(3): 393-404. |
LIU Wenping, ZHOU Zheng, WU Juan, et al. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi Formations, Changning shale-gas field, Southern Sichuan Basin[J]. Journal of Nanjing University (Natural Science), 2020, 56(3): 393-404. | |
[80] | WEI Y B, LIU Q Y, ZHU D Y, et al. Helium and natural hydrogen in the Bohai Bay Basin, China: Occurrence, resources, and exploration prospects[J]. Applied Energy, 2025, 383: 125398. |
[81] | 聂海宽, 刘全有, 党伟, 等. 页岩型氦气富集机理与资源潜力: 以四川盆地五峰组—龙马溪组为例[J]. 中国科学:地球科学, 2023, 53(6): 1285-1294. |
NIE Haikuan, LIU Quanyou, DANG Wei, et al. Enrichment mechanism and resource potential of shale-type helium: A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Science China Earth Sciences, 2023, 53(6): 1285-1294. | |
[82] |
赵圣贤, 夏自强, 郑马嘉, 等. 页岩气剩余储量评价及提高储量动用对策: 以川南长宁页岩气田五峰组—龙马溪组为例[J]. 天然气地球科学, 2023, 34(8): 1401-1411.
doi: 10.11764/j.issn.1672-1926.2023.03.021 |
ZHAO Shengxian, XIA Ziqiang, ZHENG Majia, et al. Evaluation of the remaining reserves of shale gas and countermeasures to increase the utilization of reserves: Case study of the Wufeng-Longmaxi formations in Changning area, southern Sichuan Basin[J]. Natural Gas Geoscience, 2023, 34(8): 1401-1411.
doi: 10.11764/j.issn.1672-1926.2023.03.021 |
|
[83] | CHEN B Y, STUART F M, XU S, et al. Evolution of coal-bed methane in Southeast Qinshui Basin, China: Insights from stable and noble gas isotopes[J]. Chemical Geology, 2019, 529: 119298. |
[84] |
吴义平, 王青, 陶士振, 等. 壳源氦气成藏主控因素及资源评价方法研究[J]. 地学前缘, 2024, 31(1): 340-350.
doi: 10.13745/j.esf.sf.2024.1.3 |
WU Yiping, WANG Qing, TAO Shizhen, et al. Crustal helium: Accumulation controlling factors and resource evaluation methods[J]. Earth Science Frontiers, 2024, 31(1): 340-350.
doi: 10.13745/j.esf.sf.2024.1.3 |
|
[85] |
陶士振, 吴义平, 陶小晚, 等. 氦气地质理论认识、资源勘查评价与全产业链一体化评价关键技术[J]. 地学前缘, 2024, 31(1): 351-367.
doi: 10.13745/j.esf.sf.2024.1.71 |
TAO Shizhen, WU Yiping, TAO Xiaowan, et al. Helium: Accumulation model, resource exploration and evaluation, and integrative evaluation of the entire industrial chain[J]. Earth Science Frontiers, 2024, 31(1): 351-367
doi: 10.13745/j.esf.sf.2024.1.71 |
|
[86] |
陶士振, 杨怡青, 陈悦, 等. 氦气资源形成地质条件、成因机理与富集规律[J]. 石油勘探与开发, 2024, 51(2): 436-452.
doi: 10.11698/PED.20230416 |
TAO Shizhen, YANG Yiqing, CHEN Yue, et al. Geological conditions, genetic mechanisms and accumulation patterns of helium resources[J]. Petroleum Exploration and Development, 2024, 51(2): 436-452. |
[1] | 樊云鹏, 文志刚, 李桢, 何右安, 田伟超, 刘雨航. 夹层型页岩油储层自吸排油特征及其主控因素研究 [J]. 油气藏评价与开发, 2025, 15(5): 844-857. |
[2] | 徐聃, 张聪, 贾慧敏, 李玉宏, 秦胜飞, 张文, 周俊林, 马尚伟, 范焱. 沁水盆地南部3号煤煤层气稀有气体同位素特征及氦的稀释 [J]. 油气藏评价与开发, 2025, 15(5): 921-932. |
[3] | 陈军, 王海妹, 陈曦, 汤勇, 唐良睿, 斯容, 王慧珺, 黄显著, 冷冰. 页岩油藏CO2吞吐增油及埋存主控因素研究 [J]. 油气藏评价与开发, 2025, 15(4): 537-544. |
[4] | 张欢, 柴昊楠, 赵洪宝, 杜双利, 李义涛. 重质烷烃对页岩中CO2与CH4竞争吸附的影响机制 [J]. 油气藏评价与开发, 2025, 15(4): 579-588. |
[5] | 蒋贝贝, 刘佳波, 张国强, 王栋, 李颖, 罗红文, 周浪. 枯竭气藏盐膏岩盖层CO2封存密闭性评价研究 [J]. 油气藏评价与开发, 2025, 15(4): 646-655. |
[6] | 李萌, 王文东, 苏玉亮, 张建, 范振宁, 梁海宁. 考虑岩石和流体特性的页岩油流动规律模拟 [J]. 油气藏评价与开发, 2025, 15(4): 694-703. |
[7] | 官文洁, 彭小龙, 朱苏阳, 杨晨, 彭真, 马潇然. 基于改进LSTM神经网络的加密井产能预测研究——以川南中深层页岩气为例 [J]. 油气藏评价与开发, 2025, 15(3): 479-487. |
[8] | 郭彤楼. 中国页岩气发展的回顾与思考——从志留系到寒武系 [J]. 油气藏评价与开发, 2025, 15(3): 339-348. |
[9] | 景帅, 吴建军, 马承杰. 多模型油气开发智能诊断及优化技术研究与应用 [J]. 油气藏评价与开发, 2025, 15(3): 373-381. |
[10] | 冯少柯, 熊亮. 基于多元力学实验的深层页岩气储层岩石力学特征研究 [J]. 油气藏评价与开发, 2025, 15(3): 406-416. |
[11] | 张瑾, 张凤奇, 邹彦荣, 任小庆, 陈红果, 王鹏涛, 茹荣, 张文. 地热水溶型和天然气伴生型氦气来源特征对比——以渭河盆地和鄂尔多斯盆地北部为例 [J]. 油气藏评价与开发, 2025, 15(3): 463-470. |
[12] | 朱苏阳, 彭真, 邸云婷, 彭小龙, 刘东晨, 官文洁. 页岩气产能评价研究进展:内涵、方法和方向 [J]. 油气藏评价与开发, 2025, 15(3): 488-499. |
[13] | 胡俊杰, 卢聪, 郭建春, 曾波, 郭兴午, 马莅, 孙玉铎. 深层页岩气纤维压裂及纤维暂堵技术研究与应用 [J]. 油气藏评价与开发, 2025, 15(3): 515-521. |
[14] | 刘浩琦, 陈富红, 余致理, 龚伟, 罗西, 林魂. 深层页岩狭长缝内支撑剂沉降运移规律实验研究 [J]. 油气藏评价与开发, 2025, 15(3): 528-536. |
[15] | 朱苏阳, 刘伟, 王运峰, 贾春生, 陈朝刚, 彭小龙. 四川盆地煤层气勘探开发现状与前景 [J]. 油气藏评价与开发, 2025, 15(2): 185-193. |
|