| [1] |
DONG H J, DAI H C, DONG L, et al. Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis[J]. Applied Energy, 2015, 144: 165-174.
|
| [2] |
叶晓东, 陈军, 陈曦, 等. “双碳”目标下的中国CCUS技术挑战及对策[J]. 油气藏评价与开发, 2024, 14(1): 1-9.
|
|
YE Xiaodong, CHEN Jun, CHEN Xi, et al. China’s CCUS technology challenges and countermeasures under “double carbon” target[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 1-9.
|
| [3] |
何志勇, 郭本帅, 汪东, 等. CO2捕集和利用技术的应用与研发进展[J]. 油气藏评价与开发, 2024, 14(1): 70-75.
|
|
HE Zhiyong, GUO Benshuai, WANG Dong, et al. Application and research progress of CO2 capture and utilization technology[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 70-75.
|
| [4] |
芮振华, 邓海洋, 胡婷. 基于混合物理数据驱动的油藏地质体CO2利用与封存代理模型研究[J]. 钻采工艺, 2025, 48(1): 190-198.
|
|
RUI Zhenhua, DENG Haiyang, HU Ting. Study on CO2 utilization and storage proxy model for reservoir geobodies based on hybrid physics-data driven[J]. Drilling and Production Technology,2025, 48(1): 190-198.
|
| [5] |
张烈辉, 韦棋, 廖广志, 等. 双碳背景下中国CCUS-EOR发展现状、思考与展望[J]. 钻采工艺, 2025, 48(5): 10-20.
|
|
ZHANG Liehui, WEI Qi, LIAO Guangzhi, et al. Current status, reflections and prospects of CCUS-EOR development in China under the dual-carbon goals[J]. Drilling and Production Technology, 2025, 48(5): 10-20.
|
| [6] |
姚红生, 邱伟生, 周德华, 等. 苏北盆地复杂断块油藏CCUS-EOR关键技术与实践[J]. 天然气工业, 2025, 45(9): 212-222.
|
|
YAO Hongsheng, QIU Weisheng, ZHOU Dehua, et al. Key technologies and practices of CCUS-EOR in complex fault-block reservoirs in the Subei Basin[J]. Natural Gas Industry, 2025, 45(9): 212-222.
|
| [7] |
谢玉洪, 王建花, 袁全社. 中国海洋深水区油气地球物理勘探技术进展[J]. 石油物探, 2025, 64(3): 397-415.
|
|
XIE Yuhong, WANG Jianhua, YUAN Quanshe. Advances in deepwater hydrocarbon geophysical exploration technologies in China[J]. Geophysical Prospecting for Petroleum, 2025, 64(3): 397-415.
|
| [8] |
BICKLE M J. Geological carbon storage[J]. Nature Geoscience, 2009, 2(12): 815-818.
|
| [9] |
MATTER J M, KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience, 2009, 2(12): 837-841.
|
| [10] |
柴愈坤, 任旭, 戴建文, 等. 海上咸水层CO2封存断层侧向封闭性评价: 以珠江口盆地恩平凹陷恩平A油田为例[J]. 石油实验地质, 2025, 47(5): 1185-1197.
|
|
CHAI Yukun, REN Xu, DAI Jianwen, et al. Evaluation of fault lateral sealing for CO2 storage in offshore saline aquifers: A case study of Enping A Oilfield in Enping Sag, Pearl River Mouth Basin[J]. Petroleum Geology & Experiment, 2025, 47(5): 1185-1197.
|
| [11] |
TRUCHE L, BAZARKINA E F, BERGER G, et al. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in situ potentiometry and Raman spectroscopy up to 280 ℃ and 150 bar[J]. Geochimica et Cosmochimica Acta, 2016, 177: 238-253.
|
| [12] |
GUO J J, XIONG W, HU Q Y, et al. Stability analysis and two-phase flash calculation for confined fluids in nanopores using a novel phase equilibrium calculation framework[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2306-2322.
|
| [13] |
DUAN Z, SUN R. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2 000 bar[J]. Chemical Geology, 2003, 193(3/4): 257-271.
|
| [14] |
DUAN Z, SUN R, ZHU C, et al. An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO4 2- [J]. Marine Chemistry, 2006, 98(2/3/4): 131-139.
|
| [15] |
WANG L, SHEN Z, HU L, et al. Modeling and measurement of CO2 solubility in salty aqueous solutions and application in the Erdos Basin[J]. Fluid Phase Equilibria, 2014, 377: 45-55.
|
| [16] |
ZHAO H, FEDKIN M V, DILMORE R M, et al. Carbon dioxide solubility in aqueous solutions of sodium chloride at geological conditions: Experimental results at 323. 15, 373. 15, and 423. 15 K and 150 bar and modeling up to 573. 15 K and 2 000 bar[J]. Geochimica et Cosmochimica Acta, 2015, 149: 165-189.
|
| [17] |
张路. 混合气体—卤水体系的密度和气体溶解度计算模型[D]. 西安:西北大学, 2016.
|
|
ZHANG Lu. Thermodynamic models for accurate calculations of densities of brines and solubilities of gas mixtures in brines[D]. Xi’an: Northwest University, 2016.
|
| [18] |
ZHANG Y Z. Study on the binary interactions of gas, brine and reservoir porous media[D]. Regina: University of Regina, 2021.
|
| [19] |
龙震宇, 王长权, 石立红, 等. 基于核岭回归算法的地层水中CO2溶解度模型研究[J]. 西安石油大学学报(自然科学版), 2023, 38(1): 95-101.
|
|
LONG Zhenyu, WANG Changquan, SHI Lihong, et al. Study on CO2 solubility model in formation water based on kernel ridge regression algorithm[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2023, 38(1): 95-101.
|
| [20] |
董利飞, 董文卓, 张旗, 等. 咸水层中CO2溶解性能预测方法优选[J]. 油气藏评价与开发, 2024, 14(1): 35-41.
|
|
DONG Lifei, DONG Wenzhuo, ZHANG Qi, et al. Optimal prediction method for CO2 solubility in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 35-41.
|
| [21] |
张卫. 基于机器学习的深部咸水中CO2溶解度预测研究[D]. 重庆: 重庆科技学院, 2024.
|
|
ZHANG Wei. A machine learning-based method to predict CO2 solubility in deep brines [D]. Chongqing: Chongqing University of Science and Technology, 2024.
|
| [22] |
阎凤元, 雷海申, 王睿, 等. 基于机理分析与数据驱动的CO2溶解度计算方法[J]. 石油与天然气化工, 2025, 54(2): 51-61.
|
|
YAN Fengyuan, LEI Haishen, WANG Rui, et al. Calculation method of CO2 solubility based on mechanism analysis and data driven[J]. Chemical Engineering of Oil & Gas, 2025, 54(2): 51-61.
|
| [23] |
SPYCHER N, PRUESS K. A phase-partitioning model for CO2-brine mixtures at elevated temperatures and pressures: Application to CO2-enhanced geothermal systems[J]. Transport in Porous Media, 2010, 82(1): 173-196.
|
| [24] |
ZIRRAHI M, AZIN R, HASSANZADEH H, et al. Mutual solubility of CH4, CO2, H2S, and their mixtures in brine under subsurface disposal conditions[J]. Fluid Phase Equilibria, 2012, 324: 80-93.
|
| [25] |
BIAN X Q, XIONG W, KASTHURIARACHCHI D T K, et al. Phase equilibrium modeling for carbon dioxide solubility in aqueous sodium chloride solutions using an association equation of state[J]. Industrial & Engineering Chemistry Research, 2019, 58(24): 10570-10578.
|
| [26] |
SUN R, DUBESSY J. Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part II: Application to H2O-NaCl and CO2-H2O-NaCl System[J]. Geochimica et Cosmochimica Acta, 2012, 88: 130-145.
|
| [27] |
周建堂, 康丽侠, 杨立国, 等. 基于GE混合规则的SRK-CPA状态方程预测CO2在地层水中的溶解度[J]. 石油化工, 2021, 50(12): 1274-1279.
|
|
ZHOU Jiantang, KANG Lixia, YANG Liguo, et al. Prediction of the solubility of CO2 in formation water using SRK-CPA equation based on GE mixing rule[J]. Petrochemical Technology, 2021, 50(12): 1274-1279.
|
| [28] |
XIONG W, ZHANG L H, TIAN Y, et al. Phase equilibrium modeling for carbon dioxide capture and storage (CCS) fluids in brine using an electrolyte association equation of state[J]. Chemical Engineering Science, 2023, 275: 118723.
|
| [29] |
SPYCHER N, PRUESS K, ENNIS-KING J. CO2-H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 ℃ and up to 600 bar[J]. Geochimica et Cosmochimica Acta, 2003, 67(16): 3015-3031.
|
| [30] |
DUAN Z, MAO S. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523 K and from 1 to 2 000 bar[J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3369-3386.
|
| [31] |
PITZER K S, PEIPER J C, BUSEY R H. Thermodynamic properties of aqueous sodium chloride solutions[J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 1-102.
|
| [32] |
TEYMOURI M B, RAMIN S. Phase equilibria measurements and modelling of CO2–rich fluids/brine systems[D]. Edinburgh: Heriot-Watt University, 2017.
|
| [33] |
ZHAO H, DILMORE R M, LVOV S N. Experimental studies and modeling of CO2 solubility in high temperature aqueous CaCl2, MgCl2, Na2SO4, and KCl solutions[J]. AIChE Journal, 2015, 61(7): 2286-2297.
|
| [34] |
RUMPF B, MAURER G. An experimental and theoretical investigation on the solubility of carbon dioxide in aqueous solutions of strong electrolytes[J]. Berichte der Bunsengesellschaft Für Physikalische Chemie, 1993, 97(1): 85-97.
|
| [35] |
BANDO S, TAKEMURA F, NISHIO M, et al. Solubility of CO2 in aqueous solutions of NaCl at (30 to 60) ℃ and (10 to 20) MPa[J]. Journal of Chemical & Engineering Data, 2003, 48(3): 576-579.
|
| [36] |
TAKENOUCHI S, KENNEDY G C. The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures[J]. American Journal of Science, 1965, 263(5): 445-454.
|
| [37] |
TONG D, MARTIN TRUSLER J P, VEGA-MAZA D. Solubility of CO2 in aqueous solutions of CaCl2 or MgCl2 and in a synthetic formation brine at temperatures up to 423 K and pressures up to 40 MPa[J]. Journal of Chemical & Engineering Data, 2013, 58(7): 2116-2124.
|
| [38] |
刘思雨, 杨国栋, 黄冕, 等. 人工裂缝参数对CO2-ESGR中CO2封存和CH4开采的影响[J]. 石油与天然气化工, 2024, 53(2): 94-100.
|
|
LIU Siyu, YANG Guodong, HUANG Mian, et al. Effects of artificial fracture parameters on CO2 sequestration and CH4 production in CO2-ESGR[J]. Chemical Engineering of Oil & Gas, 2024, 53(2): 94-100.
|
| [39] |
张烈辉, 熊伟, 赵玉龙, 等. 衰竭底水气藏注CO2提高天然气采收率与碳封存机理[J]. 天然气工业, 2024, 44(4): 25-38.
|
|
ZHANG Liehui, XIONG Wei, ZHAO Yulong, et al. Mechanism of CO2 injection to enhance gas recovery and carbon storage in depleted bottom-water gas reservoirs[J]. Natural Gas Industry, 2024, 44(4): 25-38.
|