油气藏评价与开发 ›› 2026, Vol. 16 ›› Issue (1): 11-22.doi: 10.13809/j.cnki.cn32-1825/te.2025491

• 专家论坛 • 上一篇    下一篇

CO2地质封存泄漏迁移转化模拟研究综述与展望

林千果1,2(), 王冀星3   

  1. 1.上海交通大学碳中和发展研究院,上海 200030
    2.上海交通大学机械与动力工程学院,上海 200030
    3.华北电力大学环境科学与工程学院,北京 102206
  • 收稿日期:2025-10-20 发布日期:2026-01-06 出版日期:2026-01-26
  • 作者简介:林千果(1971—),男,博士,教授,主要从事二氧化碳捕集、利用与封存研究。地址:上海市闵行区东川路800号,邮政编码:201306。E-mail: qianguo.lin@sjtu.edu.cn
  • 基金资助:
    深地国家科技重大专项“油气藏封存体全空间CO2运移高效监测技术及装备研究”(2024ZD1004300)

Review and prospects of simulation studies on leakage, migration, and transformation of geological CO2 storage

LIN Qianguo1,2(), WANG Jixing3   

  1. 1.Research Institute of Carbon Neutrality, Shanghai Jiao Tong University, Shanghai 200030, China
    2.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
    3.College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2025-10-20 Online:2026-01-06 Published:2026-01-26

摘要:

CO2地质封存是碳捕集、利用与封存(CCUS)技术实现减排目标的关键环节。随着CO2 注入规模的扩大和注入时间延长,井筒完整性失效、断层活化、盖层裂缝扩展与裂隙发育引发的井筒和盖层泄漏风险逐渐增大。泄漏后的CO2通过纵向上浮和横向运移进入地下水和土壤环境,并在其中广域扩散与多形式转化,进而影响区域生态环境安全。在地层的热-力-流-化学耦合场的作用下,这种多途径、跨空间、大范围、长周期的迁移和扩散转化过程异常复杂,精准识别和量化评估泄漏安全和环境风险,需要依赖各种迁移转化模拟方法。本文系统总结了CO2地质封存的主要泄漏途径(井筒、盖层和断层),阐述了泄漏机制,归纳了温度、压力和地球化学反应等关键影响因素;解析了CO2泄漏后在断层、盖层、地下水和土壤等地下环境中的迁移转化机理,明确了其主导控制因素与环境效应;综述了盖层、断层、地下水和土壤中CO2迁移和迁移转化耦合模拟方法,以及这些模拟在验证泄漏机理、识别迁移转化规律和预测环境风险中的应用。研究表明,当前模型在精确模拟断层气相析出动态分布、跨地层多环境耦合及微生物转化过程方面仍面临挑战。未来应重点开展跨地层多环境耦合的迁移转化模拟研究,构建全空间、全流程的运移泄漏过程分析体系,建立注入-运移-泄漏迁移扩散系统的一体化模拟框架,从而为泄漏监测的全域优化与环境风险精准预测提供理论和支撑。

关键词: CO2地质封存, CO2泄漏, 迁移转化, 数值模拟, 环境影响

Abstract:

Geological CO2 storage is a critical part in carbon capture, utilization, and storage technology for achieving emission reduction goals. As the scale of CO2 injection expands and its duration prolongs, the risks of leakage from wellbores and caprocks gradually increase due to wellbore integrity failures, fault reactivation, and fracture propagation or fissure development in caprocks. Post-leakage CO2 will rise vertically and diffuse horizontally into subsurface including groundwater systems and soil environment, where it spreads extensively and undergoes multiple types of transformation, thereby affecting regional ecological and environmental safety. Under the coupled thermo-hydro-mechanical-chemical field within geological formation, such multi-pathway, cross-spatial, large-scale, and long-term migration, diffusion, and transformation processes are extremely complex. Accurate identification and quantitative assessment of leakage safety and environmental risk rely on various migration-transformation simulation methods. This study systematically summarizes the main leakage pathways of geological CO2 storage (wellbores, caprocks, and faults), explains the leakage mechanisms, and discusses key influencing factors such as temperature, pressure, and geochemical reactions. The migration and transformation mechanisms of CO2 after leakage in underground environments such as faults, caprocks, groundwater, and soil are analyzed, and the dominant controlling factors and environmental effects of migration and transformation are identified. This study reviews the simulation methods for CO2 migration and coupled migration and transformation in caprocks, faults, groundwater, and soil, as well as their application in validating leakage mechanisms, identifying migration-transformation patterns, and predicting environmental risks. This study highlights that the current model still faces challenges in accurately simulating the dynamic distribution of gas phase exsolution in faults, cross-formation multi-environment coupling, and microbial transformation process. Future research should focus on coupled modeling of cross-formation multi-environment migration and transformation, achieve full-space and full-process simulations of migration and leakage, and establish an integrated simulation framework of injection-migration-leakage-diffusion systems, thereby enabling the application of optimized leakage monitoring and precise environmental risk prediction.

Key words: geological CO2 storage, CO2 leakage, migration and transformation, numerical simulation, environmental impact

中图分类号: 

  • TE35