油气藏评价与开发 ›› 2024, Vol. 14 ›› Issue (4): 638-646.doi: 10.13809/j.cnki.cn32-1825/te.2024.04.014
收稿日期:
2023-11-06
出版日期:
2024-08-26
发布日期:
2024-09-10
作者简介:
盖长城(1988—),男,硕士,副研究员,主要从事地热资源评价及开发工作。地址:河北省唐山市路北区新华西道101号,邮政编码:063004。E-mail:基金资助:
GAI Changcheng(),ZHAO Zhongxin,REN Lu,YAN Yican,HOU Benfeng
Received:
2023-11-06
Online:
2024-08-26
Published:
2024-09-10
摘要:
在中国“双碳”战略背景下,清洁能源的高效开发利用逐渐成为各行业关注的焦点,而中深层水热型地热资源是一种储量丰富、运行稳定、绿色环保的清洁能源。近年来,随着地热资源开发利用程度逐渐增加,开发模式逐渐向集群式发展,相比以往的分布式开发模式,集群式开发具有经济、稳定、抗风险能力高、改扩建能力强等优点。但开发模式、采灌井网、采灌井距等关键参数仍在探索阶段,这些参数对集群式开发影响明显,亟须对此开展机理研究、优化关键参数。以HTC地热田作为研究对象,利用数值模拟技术,耦合地下温度场、压力场、水流场建立数学模型,分析不同开发模式、采灌井网、采灌井距条件下地下温度场、压力场、水流场变化规律,确定最优参数,指导矿场生产。实践证实,该方法可有效保障地热开发项目稳定运行,实现地热开发项目经济效益最优化。
中图分类号:
Changcheng GAI,Zhongxin ZHAO,Lu REN, et al. Research and application of well location deployment parameters for cluster development of medium-deep hydrothermal geothermal resources: A case study of HTC geothermal field[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 638-646.
表3
地热田模型关键参数"
参数类型 | 参数名称 | 参数取值 |
---|---|---|
地层参数 | 储层埋深/m | 2 400 |
储层厚度/m | 200 | |
孔隙度/% | 31 | |
渗透率/(10-3 μm3) | 497 | |
地层压力/MPa | 24 | |
流体参数 | 水热容/[J/(m3·℃)] | 4.20×106 |
水相热传导率/[J/(m·d·℃)] | 5.34×104 | |
岩石参数 | 岩石热容[J/(m3·℃)] | 2.35×106 |
岩石热传导率/[J/(m·d·℃)] | 6.60×105 | |
边界条件 | 热储温度/℃ | 78 |
采水量/(m3/h) | 100 | |
回灌量/(m3/h) | 75 | |
回灌温度/℃ | 30 | |
采灌时间/a | 30 | |
模型参数 | 单网格水平长度/m | 10 |
单网格纵向长度/m | 10 | |
单网格厚度/m | 50 | |
网格数量/个 | 130×86×4 |
[1] | 李文, 孔祥军, 袁利娟, 等. 中国地热资源概况及开发利用建议[J]. 中国矿业, 2020, 29(增刊1): 22-26. |
LI Wen, KONG Xiangjun, YUAN Lijuan, et al. General situation and suggestions of development and utilization of geothermal resources in China[J]. China Mining Magazine, 2020, 29(suppl. 1): 22-26. | |
[2] | 刘国勇, 赵忠新, 任路, 等. 沉积盆地中深层水热型地热资源评价体系研究与应用[J]. 油气与新能源, 2022, 34(2): 38-47. |
LIU Guoyong, ZHAO Zhongxin, REN Lu, et al. Study and application of the evaluation system concerning the hydrothermal type geothermal resource at the middle and deep layers of sedimentary basin[J]. Petroleum and New Energy, 2022, 34(2): 38-47. | |
[3] | 蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321. |
LIN Wenjing, LIU Zhiming, WANG Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321. | |
[4] | 张鑫. 地热水藏开发模拟和温度场变化规律研究[D]. 青岛: 中国石油大学(华东), 2020. |
ZHANG Xin. Simulation of geothermal water reservoir development and study of temperature field variation[D]. Qingdao: China University of Petroleum(East China), 2020. | |
[5] | 段忠丰, 李福来, 巩亮, 等. 基于水热耦合模拟的油气区地热开发井网布局[J]. 天然气工业, 2020, 40(10): 156-162. |
DUAN Zhongfeng, LI Fulai, GONG Liang, et al. Geo-thermal development well spacing patterns based on hydrothermal coupled modeling in oil-gas bearing areas[J]. Natural Gas Industry, 2020, 40(10): 156-162. | |
[6] | 邱楠生, 刘鑫, 熊昱杰, 等. 碳酸盐团簇同位素在海相盆地热史研究中的进展[J]. 石油实验地质, 2023, 45(5): 891-903. |
QIU Nansheng, LIU Xin, XIONG Yujie, et al. Progress in the study of carbonate clumped isotope in the thermal history of marine basins[J]. Petroleum Geology & Experiment, 2023, 45(5): 891-903. | |
[7] | 党书生, 马致远, 郑磊. 咸阳地区地热采灌井最佳井距分析[J]. 地下水, 2016, 38(1): 56-58. |
DANG Shusheng, MA Zhiyuan, ZHENG Lei. An optimization of the distance between geothermal fluid[J]. Ground Water, 2016, 38(1): 56-58. | |
[8] | 陈明涛. 天津潘庄凸起构造区砂岩型热储层水-热-力学耦合数值模拟研究[D]. 长春: 吉林大学, 2020. |
CHEN Mingtao. Study on hydro-thermo-mechanical coupling numerical simulation of sandstone thermal reservoir in Panzhuang uplift area, Tianjin city[D]. Changchun: Jilin University, 2020. | |
[9] | 孙彭光. 大名地热田地质概念模型及井网模拟[J]. 长江大学学报(自然科学版), 2018, 15(13): 11-16. |
SUN Pengguang. Study on the conceptual model and development law of Guantao Formation in Daming geothermal field[J]. Journal of Yangtze University(Natural Science Edition), 2018, 15(13): 11-16. | |
[10] | 李洪达, 周宏, 赵鹏飞, 等. 集中式砂岩型热储地热资源开采井网优化与实践[J]. 钻探工程, 2023, 50(4): 149-154. |
LI Hongda, ZHOU Hong, ZHAO Pengfei, et al. Optimization and practice of well pattern for exploitation of geothermal resources in centralized sandstone thermal reservoir[J]. Drilling Engineering, 2023, 50(4): 149-154. | |
[11] | 赵鹏飞, 刘鹏, 冯学坤, 等. 曹妃甸新城地热供暖工程资源勘察报告[R]. 盘锦: 辽河油田水文地热有限公司, 2019. |
ZHAO Pengfei, LIU Peng, FENG Xuekun, et al. Resource exploration report for the Caofeidian New City geothermal heating project[R]. Panjin:Liaohe Oilfield Hydrogeology and Geothermal Co., Ltd., 2019. | |
[12] | 李洪达, 程健, 黄红祥, 等. 曹妃甸新城地热供暖项目独立后评价报告[R]. 唐山: 冀东油田研究院, 2022. |
LI Hongda, CHENG Jian, HUANG Hongxiang, et al. Post-implementation independent evaluation report of the Caofeidian New City geothermal heating project[R]. Tangshan: CNPC Jidong Oilfield Company Research Institute, 2022. | |
[13] |
董月霞, 黄红祥, 任路, 等. 渤海湾盆地北部新近系馆陶组地热田特征及开发实践——以河北省唐山市曹妃甸地热供暖项目为例[J]. 石油勘探与开发, 2021, 48(3): 666-676.
doi: 10.11698/PED.2021.03.22 |
DONG Yuexia, HUANG Hongxiang, REN Lu, et al. Geology and development of geothermal field in Neogene Guantao Formation in northern Bohai Bay Basin: A case of the Caofeidian geothermal heating project in Tangshan, China[J]. Petroleum Exploration and Development, 2021, 48(3): 666-676.
doi: 10.11698/PED.2021.03.22 |
|
[14] | 董月霞, 周海民, 夏文臣, 等. 南堡凹陷第三系层序地层研究与油气成藏的关系[J]. 石油与天然气地质, 2003, 24(1): 39-49. |
DONG Yuexia, ZHOU Haimin, XIA Wenchen, et al. Relationship between Tertiary sequence stratigraphy and oil reservoiring in Nanpu depression[J]. Oil & Gas Geology, 2003, 24(1): 39-49. | |
[15] | 梁宏斌, 钱铮, 辛守良, 等. 冀中坳陷地热资源评价及开发利用[J]. 中国石油勘探, 2010, 15(5): 63-69. |
LIANG Hongbin, QIAN Zheng, XIN Shouliang, et al. Assessment and development of geothermal resources in Jizhong Depression[J]. China Petroleum Exploration, 2010, 15(5): 63-69. | |
[16] | 汪洋, 邓晋福, 汪集旸, 等. 中国大陆热流分布特征及热-构造分区[J]. 中国科学院研究生院学报, 2001, 18(1): 51-58. |
WANG Yang, DENG Jinfu, WANG Jiyang, et al. Terrestrial heat flow pattern and thermo-tectonic domains in the continental area of China[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2001, 18(1): 51-58. | |
[17] |
邱楠生, 许威, 左银辉, 等. 渤海湾盆地中—新生代岩石圈热结构与热-流变学演化[J]. 地学前缘, 2017, 24(3): 13-26.
doi: 10.13745/j.esf.2017.03.002 |
QIU Nansheng, XU Wei, ZUO Yinhui, et al. Evolution of Meso-Cenozoic thermal structure and thermal-rheological structure of the lithosphere in the Bohai Basin, eastern North China Craton[J]. Earth Science Frontiers, 2017, 24(3): 13-26.
doi: 10.13745/j.esf.2017.03.002 |
|
[18] | 龚育龄. 中国东部渤海湾盆地热结构和热演化[D]. 南京: 南京大学, 2003. |
GONG Yuling. Thermal structure and thermal evolution of the Bohai Bay Basin in eastern China[D]. Nanjing: Nanjing University, 2003. | |
[19] | 单帅强, 何登发, 方成名, 等. 渤海湾盆地冀中坳陷高阳低凸起构造特征及成因机制[J]. 石油实验地质, 2022, 44(6): 989-996. |
SHAN Shuaiqiang, HE Dengfa, FANG Chengming, et al. Structural characteristics and genetic mechanism of Gaoyang low uplift in Jizhong Depression,Bohai Bay Basin[J]. Petroleum Geology & Experiment, 2022, 44(6): 989-996. | |
[20] | 马宏源. 砂岩热储地热群井系统优化数值模拟研究[D]. 济南: 山东大学, 2022. |
MA Hongyuan. Numerical research of multi-well geothermal system optimization in sandstone geothermal reservoir[D]. Jinan: Shandong University, 2022. | |
[21] | 程万庆, 刘九龙, 陈海波. 地热采灌对井回灌温度场的模拟研究[J]. 世界地质, 2011, 30(3): 486-492. |
CHENG Wanqing, LIU Jiulong, CHEN Haibo. Simulation research on reinjection temperature field of geothermal doublet well[J]. World Geology, 2011, 30(3): 486-492. | |
[22] | 王磊. 中深层砂岩热储回灌井参数优化模拟[J]. 科学技术与工程, 2023, 23(5): 1823-1832. |
WANG Lei. Simulation on parameters optimization of middle deep sandstone heat storage and recharge wells[J]. Science Technology and Engineering, 2023, 23(5): 1823-1832. | |
[23] | 宋美钰, 刘杰, 于彦, 等. 天津地区雾迷山组热储数值模拟研究[J]. 地质调查与研究, 2018, 41(4): 306-311. |
SONG Meiyu, LIU Jie, YU Yan, et al. Numerical simulation of Wumishan Formation thermal reservoir in Tianjin area[J]. Geological Survey and Research, 2018, 41(4): 306-311. | |
[24] | 梁卫卫, 党海龙, 刘滨, 等. 特低渗透油藏注水诱导动态裂缝实验及数值模拟[J]. 石油实验地质, 2023, 45(3): 566-575. |
LIANG Weiwei, DANG Hailong, LIU Bin, et al. Experiment and numerical simulation of water injection induced dynamic fractures in ultra-low permeability reservoirs[J]. Petroleum Geology & Experiment, 2023, 45(3): 566-575. | |
[25] | 李晓宁. 流体交换型地热井采灌能力研究[D]. 青岛: 中国石油大学(华东), 2017. |
LI Xiaoning. Study on the recovery and recharge ability of wells in geothermal fluid exchange development[D]. Qingdao: China University of Petroleum(East China), 2017. | |
[26] | KAYA E, ZARROUK S J, O'SULLIVAN M J. Reinjection in geothermal fields: A review of worldwide experience[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 47-68. |
[27] | 朱家玲, 朱晓明, 雷海燕. 地热回灌井间压差补偿对回灌效率影响的分析[J]. 太阳能学报, 2012, 33(1): 56-62. |
ZHU Jialing, ZHU Xiaoming, LEI Haiyan. Analysis of impact of pressure compensation between geothermal wells on reinjection efficiency[J]. Acta Energiae Solaris Sinica, 2012, 33(1): 56-62. | |
[28] | 曹倩, 方朝合, 李云, 等. 国内外地热回灌发展现状及启示[J]. 石油钻采工艺, 2021, 43(2): 203-211. |
CAO Qian, FANG Chaohe, LI Yun, et al. Development status of geothermal reinjection at home and abroad and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43 (2): 203-211. | |
[29] | 刘邹炜. 废弃五点井网开发地热能数值模拟研究[D]. 武汉: 长江大学, 2023. |
LIU Zouwei. Numerical simulation on exploiting geothermal energy from an abandoned five-spot well pattern[D]. Wuhan: Yangtze University, 2023. | |
[30] | 张红波. 地热资源可循环利用井网模式评价方法——以东营凹陷中央隆起带地热田为例[J]. 油气地质与采收率, 2017, 24(1): 86-91. |
ZHANG Hongbo. A well pattern evaluation method for geothermal resource recycling: A case study of geothermal field in the central uplift belt of Dongying sag[J]. Petroleum Geology and Recovery Efficiency, 2017, 24(1): 86-91. | |
[31] | 李乔丹. 基于地面地下综合优化地热能开采井网研究[D]. 西安: 西安石油大学, 2020. |
LI Qiaodan. Study on comprehensive optimization of geothermal energy production pattern based on surface and underground[D]. Xi'an: Xi'an Shiyou University, 2020. | |
[32] | 徐玉良. 齐河地区地下水源热泵抽灌井布置及地热开采效应研究[D]. 济南: 山东大学, 2019. |
XU Yuliang. Research on the arrangement of pumping and recharging wells of groundwater heat pump and the effect of geothermal resource mining in Qihe[D]. Jinan: Shandong University, 2019. |
[1] | 张益, 宁崇如, 陈亚舟, 姬玉龙, 赵立阳, 王爱方, 黄晶晶, 于凯怡. 致密油藏大排量注水吞吐技术及参数优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 727-733. |
[2] | 曹小朋, 刘海成, 李忠新, 陈先超, 江朋宇, 樊浩. 基于EDFM的页岩油水平井注水吞吐优化研究 [J]. 油气藏评价与开发, 2024, 14(5): 734-740. |
[3] | 廖凯, 张士诚, 谢勃勃. 页岩油体积压裂后合理焖井时间模拟研究 [J]. 油气藏评价与开发, 2024, 14(5): 749-755. |
[4] | 陈祥, 王冠, 刘平礼, 杜娟, 王铭, 陈伟华, 李金龙, 刘金明, 刘飞. 四川盆地灯影组酸压裂缝导流能力实验和模拟研究 [J]. 油气藏评价与开发, 2024, 14(4): 569-576. |
[5] | 陈学忠, 赵慧言, 陈满, 徐华卿, 杨建英, 杨晓敏, 唐慧莹. 海陆过渡相页岩储层合层开采数值模拟研究 [J]. 油气藏评价与开发, 2024, 14(3): 382-390. |
[6] | 张连锋,张伊琳,郭欢欢,李洪生,李俊杰,梁丽梅,李文静,胡书奎. 近废弃油藏延长生命周期开发调整技术 [J]. 油气藏评价与开发, 2024, 14(1): 124-132. |
[7] | 崔玉东, 陆程, 关子越, 罗万静, 滕柏路, 孟凡璞, 彭越. 南海海域天然气水合物降压开采储层蠕变对气井产能影响 [J]. 油气藏评价与开发, 2023, 13(6): 809-818. |
[8] | 何海燕, 刘先山, 耿少阳, 孙军昌, 孙彦春, 贾倩. 基于渗流-温度双场耦合的油藏型储气库数值模拟 [J]. 油气藏评价与开发, 2023, 13(6): 819-826. |
[9] | 梁运培, 张怀军, 王礼春, 秦朝中, 田键, 陈强, 史博文. 连续加载应力下真实裂缝流场和渗透率演化规律数值研究 [J]. 油气藏评价与开发, 2023, 13(6): 834-843. |
[10] | 施雷庭, 赵启明, 任镇宇, 朱诗杰, 朱珊珊. 煤岩裂隙形态对渗流能力影响数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(4): 424-432. |
[11] | 陈秀林, 王秀宇, 许昌民, 张聪. 基于核磁共振与微观数值模拟的CO2埋存形态及分布特征研究 [J]. 油气藏评价与开发, 2023, 13(3): 296-304. |
[12] | 候梦如,梁冰,孙维吉,刘奇,赵航. 矿物界面刚度对页岩水力压裂裂缝扩展规律的影响研究 [J]. 油气藏评价与开发, 2023, 13(1): 100-107. |
[13] | 刘叶轩,刘向君,丁乙,周鑫,梁利喜. 考虑隔层影响的页岩油储层可压性评价方法 [J]. 油气藏评价与开发, 2023, 13(1): 74-82. |
[14] | 何封,冯强,崔宇诗. W页岩气藏气井控压生产制度数值模拟研究 [J]. 油气藏评价与开发, 2023, 13(1): 91-99. |
[15] | 郭鸿,夏岩,陈雷,金光,刘建强. 废弃油气井改造的地热井换热性能影响因素模拟研究 [J]. 油气藏评价与开发, 2022, 12(6): 850-858. |
|