Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (1): 10-28.doi: 10.13809/j.cnki.cn32-1825/te.2022.01.002
• Specialist Forum • Previous Articles Next Articles
LIU Shugen1,2(),RAN Bo1,YE Yuehao1,WANG Shiyu3,YANG Di1,LUO Chao4,HAN Yuyue1,SONG Jinmin1,ZHANG Xuan4
Received:
2021-10-09
Online:
2022-03-24
Published:
2022-02-26
CLC Number:
Shugen LIU,Bo RAN,Yuehao YE, et al. Outcrop of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Qilong Village, Xishui, Guizhou[J]. Reservoir Evaluation and Development, 2022, 12(1): 10-28.
Table 1
Basic characteristics and comprehensive identification of anoxic environment[23,24]"
判别 指标 | 水体溶氧量(mL/L) | 标型 矿物 | 黄铁矿矿化度(DOP) | 还原态/ 氧化态 | 微量元素 含量 | V/(V+Ni) | V/Cr | Ni/Co | U/Th | Au (mg/L) | 铀 异常 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
氧亏损环境 | 缺氧 | 0.2 | 原生金属 硫化物 | 0.4~0.7(无H2S);大于0.7(含H2S) | Fe2+/Fe3+>1 | 过渡金属、有机硫含量高 | >0.85 | >4.25 | >7.0 | >1.25 | >12.0 | >1 |
贫氧 | 0.2~2.0 | 0.85~0.60 | 2.0~4.25 | 5.0~7.0 | 0.75~1.25 | 5.0~12.0 | >1 | |||||
富氧环境 | >2.0 | 褐铁矿、 Mo氧化物 | <0.4 | Fe2+/Fe3+<1 | 过渡金属 含量低 | <0.60 | <2.0 | <5.0 | <0.75 | <5.0 | <1 |
[1] | 杨迪, 刘树根, 单钰铭, 等. 四川盆地东南部习水地区上奥陶统—下志留统泥页岩裂缝发育特征[J]. 成都理工大学学报(自然科学版), 2013, 40(5):543-553. |
YANG Di, LIU Shugen, SHAN Yuming, et al. Fracture characteristics of shale in Upper Ordovician-Lower Silurian in Xishui Area, Southeast of Sichuan Basin, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(5):543-553. | |
[2] | 王世玉, 刘树根, 孙玮, 等. 黔中隆起北部上奥陶统—下志留统页岩特征[J]. 成都理工大学学报(自然科学版), 2012, 39(6):599-605. |
WANG Shiyu, LIU Shugen, SUN Wei, et al. Features of the shale from Upper Ordovician-Lower Silurian in the north of Middle Guizhou uplift, China[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2012, 39(6):599-605. | |
[3] | 袁海峰. 四川盆地震旦系—下古生界成藏机理[D]. 成都:成都理工大学, 2008. |
YUAN Haifeng. Accumulation mechanism of Sinian-Lower Paleozoic Reservoirs in Sichuan Basin[D]. Chengdu: Chengdu University of Technology, 2008. | |
[4] | LEE J S, CHAO Y T. Geology of the Gorge district of the Yangtze(from Ichang to Tzekuei)with special reference to the development of the Gorges[J]. Bulletin of the Geological Society of China, 1924, 3:351-391. |
[5] | SUN Y C. Graptolite-bearing strata of China[J]. Bulletin of the Geological Society of China, 1931, 10(1):291-300. |
[6] | 穆恩之. 论五峰页岩[J]. 古生物学报, 1954, 2(2):153-170. |
MU Enzhi. On the Wufeng shale[J]. Acta Palaeontologica Sinica, 1954, 2(2):153-170. | |
[7] | 汪啸风. 中国奥陶纪古地理重建及其沉积环境与生物相特征[J]. 古生物学报, 1989, 28(2):234-248. |
WANG Xiaofeng. Paleogeographic reconstruction of Ordovician in China and characteristics of its sedimentary environment and biofacies[J]. Acta Palaeontologica Sinica, 1989, 28(2):234-248. | |
[8] | 汪啸风, 曾庆銮, 周天梅, 等. 再论奥陶系与志留系界线的划分与对比[J]. 地球学报, 1986, 8(1):157-175. |
WANG Xiaofeng, ZENG Qingluan, ZHOU Tianmei, et al. Rediscussion on the division and correlation of the Ordovician-Silurian boundary[J]. Bulletin of the Chinese Academy of Geological Sciences, 1986, 8(1):157-175. | |
[9] | 陈旭, 戎嘉余, 樊隽轩, 等. 扬子区奥陶纪末赫南特亚阶的生物地层学研究[J]. 地层学杂志, 2000, 24(3):173-175. |
CHEN Xu, RONG Jiayu, FAN Junxuan, et al. Biostratigraphy of the Hernantian Substage in the Yangtze region[J]. Journal of Stratigraphy, 2000, 24(3) : 173-175. | |
[10] | CHEN X, RONG J Y, MITCHELL C E, et al. Latest Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China with a global correlation[J]. Geological Magazine, 2000, 137:623-650. |
[11] | CHEN X, RONG J Y, FAN J X, et al. The global boundary stratotype section and point(GSSP) for the base of the Hirnantian Stage(the uppermost of the Ordovician System)[J]. Episodes, 2006, 29(3):183-196. |
[12] | 樊隽轩, MELCHIN M J, 陈旭, 等. 华南奥陶—志留系龙马溪组黑色笔石页岩的生物地层学[J]. 中国科学:地球科学, 2012, 42(1):130-139. |
FAN Junxuan, MELCHIN M J, CHEN Xu, et al. Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J]. Scientia Sinica(Terrae), 2012, 42(1):130-139. | |
[13] | 陈旭, 樊隽轩, 张元动, 等. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定[J]. 地层学杂志, 2015, 39(4):351-358. |
CHEN Xu, FAN Junxuan, ZHANG Yuandong, et al. Subdivision and delineation of the Wufeng and Lungmachi black shales in the subsurface areas of the Yangtze platform[J]. Journal of Stratigraphy, 2015, 39(4):351-358. | |
[14] | 陈旭, 樊隽轩, 王文卉, 等. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J]. 中国科学:地球科学, 2017, 47(6):720-732. |
CHEN Xu, FAN Junxuan, WANG Wenhui, et al. Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China[J]. Scientia Sinica(Terrae), 2017, 47(6):720-732. | |
[15] | 秦建中, 刘宝泉, 国建英, 等. 关于碳酸盐烃源岩的评价标准[J]. 石油实验地质, 2004, 8(3):281-286. |
QIN Jianzhong, LIU Baoquan, GUO Jianying, et al. Discussion on the evaluation standards of carbonate source rocks[J]. Petroleum Geology & Experiment, 2004, 8(3):281-286. | |
[16] | GINGELE F, DAHMKE A. Discrete barite particles and barium as tracers of paleoproductivity in South Atlantic sediments[J]. Paleoceanography, 1994, 9(1):151-168. |
[17] | PAYTAN A, MOORE W S, KASTNER M. Sedimentation rate as determined by 226Ra activity in marine barite[J]. Geochimica et Cosmochimica Acta, 1996, 60(22):4313-4319. |
[18] | BERNSTEIN R E, BYRNE R H. Acantharians and marine barite[J]. Marine Chemistry, 2004, 86(1-2):45-50. |
[19] | MCMANUS J, WILLIAM M B, SILKE S. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential[J]. Geochim Cosmochim Acta, 2006, 70:4643-4662. |
[20] | SIEBERT C, MCMANUS J, BICE A, et al. Molybdenum isotope signatures in continental margin marine sediments[J]. Earth Planet Science Letters, 2006, 241(3-4):723-733. |
[21] | ZHOU L, HUANG J H, ARCHER C, et al. Molybdenum isotope composition from Yangtze Block continental margin and its indication to organic burial rate[J]. Frontiers of Earth Science in China, 2007, 1:417-424. |
[22] | 殷鸿福, 谢树成, 颜佳新, 等. 海相碳酸盐烃源岩评价的地球生物学方法[J]. 中国科学:地球科学, 2011, 41(7):895-909. |
YIN Hongfu, XIE Shucheng, YAN Jiaxin, et al. Geobiological approach to evaluating marine carbonate source rocks of hydrocarbon[J]. Scientia Sinica(Terrae), 2011, 41(7):895-909. | |
[23] | JONES B, MANNING D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1-4):111-129. |
[24] | KIMURA H, WATANABE Y. Oceanic anoxia at the Precambrian-Cambrian boundary[J]. Geology, 2001, 29(11):995-998. |
[25] | LOUCKS R G, REED R M, RUPPEL S C, et al. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79:848-861. |
[26] | CURTIS J B. Fractured shale-gas systems[J]. AAPG Bulletin, 2002, 86(11):1921-1938. |
[27] | JARVIE D M, HILL R J, RUBLE T E, et al. Unconventional shale-gas systems: The mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment[J]. AAPG Bulletin, 2007, 91(4):475-499. |
[28] | SCHIEBER J. Shale microfabrics and pore development: an overview with emphasis on the importance of depositional processes[J]. Recovery, 2011: 1-4. |
[29] | MASTALERZ M, SCHIMMELMANN A, DROBNIAK A, et al. Porosity of Devonian and Mississippian new Albany Shale across a maturation gradient: Insights from organic petrology, gas adsorption, and mercury intrusion[J]. AAPG Bulletin, 2013, 97:1621-1643. |
[30] | LOUCKS R G, REED R M, RUPPEL S C, et al. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin, 2012, 96:1071-1098. |
[31] | ROUQUEROL F, ROUQUEROL J, SING K. Adsorption by powders and porous solids: Principles, methodology and applications[M]. San Diego: Academic Press, 1999. |
[1] | GAO Yuqiao, HE Xipeng, CHENG Xiong, TANG Xuan, HUA Caixia, ZAN Ling, ZHANG Peixian, CHEN Xuewu, PANG Yiwei. Discussion on high hydrocarbon generation efficiency of saline lacustrine source rocks with low TOC: A case study of the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 678-687. |
[2] | LIU Xugang, LI Guofeng, LI Lei, WANG Ruixia, FANG Yanming. Imbibition displacement mechanism of fracturing fluid in shale oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 756-763. |
[3] | GUO Zhidong, KANG Yili, WANG Yubin, GU Linjiao, YOU Lijun, CHEN Mingjun, YAN Maoling. Gas-water relative permeability characteristics and production dynamic response of low pressure and high water cut tight gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 138-150. |
[4] | XUE Gang, XIONG Wei, ZHANG Peixian. Genesis analysis and effective development of normal pressure shale gas reservoir: A case of Wufeng-Longmaxi shale gas reservoir in southeast margin of Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 668-675. |
[5] | WANG Xiaoming,CHEN Junbin,REN Dazhong. Research progress and prospect of pore structure representation and seepage law of continental shale oil reservoir [J]. Reservoir Evaluation and Development, 2023, 13(1): 23-30. |
[6] | JIANG Shu,LI Chun,CHEN Guohui,GUO Tonglou,WU Yuyuan,HE Xipeng,GAO Yuqiao,ZHANG Peixian. Occurrence of normally-pressured shale gas in China and the United States and their effects on mobility and production: A case study of southeast Sichuan Basin and Appalachia Basin [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 399-406. |
[7] | LIU Yulin,FAN Lingxiao,FANG Dazhi,PENG Yongmin,ZENG Lianbo,FENG Dongjun. Application of a new source-reservoir classification method in production analysis of shale gas wells in Eastern Sichuan [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 429-436. |
[8] | MA Lin,JIANG Xiani,GONG Jinsong. Analysis of logging characteristics of high quality shale gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 445-454. |
[9] | ZHANG Chenglin,YANG Xuefeng,ZHAO Shengxian,ZHANG Jian,DENG Feiyong,HE Yuanhan,ZHANG Deliang,WANG Gaoxiang,ZHONG Guanghai. Target position optimization for shale reservoirs in Zigong Block of southern Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 496-505. |
[10] | YANG Yubin,XIAO Wenlian,HAN Jian,GOU Ling,LI Min,ZHOU Keming,OUYANG Mukun,CHEN Li. Gas-water flow characteristics and influencing factors of tight sandstone in Danfengchang Gas Field [J]. Reservoir Evaluation and Development, 2022, 12(2): 356-364. |
[11] | GAO Yuqiao,LIU Nana,ZHANG Peixian,HE Guisong,GAO Quanfang. Geological characteristic and its implications of shale exploration in Qijiang, Chongqing, China [J]. Reservoir Evaluation and Development, 2022, 12(1): 119-129. |
[12] | DU Wei,PENG Yongmin,LONG Shengxiang,NIE Haikuan,SUN Chuanxiang,YEERHAZI Talihaer. Geological characteristics of shale in Wufeng-Longmaxi Formation of Bayu outcrop in Daozhen, northern Guizhou [J]. Reservoir Evaluation and Development, 2022, 12(1): 130-138. |
[13] | LIU Ruobing,WEI Xiangfeng,LIU Zhujiang,YAN Jihong,YUAN Tao,WEI Fubin. Geological section analysis of drilling in Wufeng-Longmaxi Formation in Well-JY1 [J]. Reservoir Evaluation and Development, 2022, 12(1): 47-57. |
[14] | SUN Cangjun,HUANG Lei,WU Haojun,JIANG Yong,WANG Di. Acid sensitivity evaluation of ultra-low permeability reservoir in structure-B of Bohai Bay [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 703-708. |
[15] | ZHAO Peirong. Reservoir characteristics and gas exploration potential of Permian Mao-1 Member of Maokou Formation in Jiaoshiba Area [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 772-781. |
|