Petroleum Reservoir Evaluation and Development ›› 2022, Vol. 12 ›› Issue (4): 604-616.doi: 10.13809/j.cnki.cn32-1825/te.2022.04.008
• Methodological and Theory • Previous Articles Next Articles
YI Liangping1(),ZHANG Dan2(),YANG Ruoyu3,XIAO Jialin4,LI Xiaogang2,YANG Zhaozhong2
Received:
2021-10-22
Online:
2022-09-02
Published:
2022-08-26
Contact:
ZHANG Dan
E-mail:ylpfrac@163.com;18382237347@163.com
CLC Number:
Liangping YI,Dan ZHANG,Ruoyu YANG, et al. Hydraulic fracture extension characteristics of fractured formation based on phase field method[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 604-616.
Table 2
Simulation parameters which affect hydraulic fracture extension trajectory"
参数 | 符号 | 值 | 参数 | 符号 | 值 | |
---|---|---|---|---|---|---|
最小水平主应力(MPa) | σx | 20 | 天然裂缝初始渗透率(10-3 μm2) | knf0 | 20 | |
临界应力(MPa) | σc | 3 | 注入速率(m2/s) | q | 0.003 | |
天然裂缝临界应力(MPa) | σcf | 1 | 流体黏度(mPa·s) | μ | 1 | |
杨氏模量(MPa) | E | 23 500 | 时间步长(s) | Δt | 2 | |
泊松比 | v | 0.21 | 总注入时间(s) | T_total | 24 | |
流体体积模量(MPa) | Kf | 2 200 | 式(7)中的常数 | b1 | 1 | |
孔隙度 | φ | 0.05 | 式(7)中的常数 | b2 | 1×108 | |
Biot系数 | α | 0.95 | 式(7)中的常数 | b3 | 1.5 | |
基质初始渗透率(10-3 μm2) | k0 | 0.50 |
[1] | 李英杰, 钟立博, 左建平. 页岩Ⅰ型裂纹遇层理起裂扩展准则研究[J]. 中国矿业大学学报, 2020, 49(3):488-498. |
LI Yingjie, ZHONG Libo, ZUO Jianping. Crack initiation and propagation criteria of mode I crack encountering bedding plane for shale[J]. Journal of China University of Mining& Technology, 2020, 49(3): 488-498. | |
[2] | 张丰收, 吴建发, 黄浩勇, 等. 提高深层页岩裂缝扩展复杂程度的工艺参数优化[J]. 天然气工业, 2021, 41(1):125-135. |
ZHANG Fengshou, WU Jianfa, HUANG Haoyong, et al. Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs[J]. Natural Gas Industry, 2021, 41(1): 125-135. | |
[3] | 郭建春, 赵志红, 路千里, 等. 深层页岩缝网压裂关键力学理论研究进展[J]. 天然气工业, 2021, 41(1):102-117. |
GUO Jianchun, ZHAO Zhihong, LU Qianli, et al. Research progress in key mechanical theories of deep shale network fracturing[J]. Natural Gas Industry, 2021, 41(1): 102-117. | |
[4] |
刘顺, 何衡, 赵倩云, 等. 水力裂缝与天然裂缝交错延伸规律[J]. 石油学报, 2018, 39(3):320-326.
doi: 10.7623/syxb201803007 |
LIU Shun, HE Heng, ZHAO Qianyun, et al. Staggered extension laws of hydraulic fracture and natural fracture[J]. Acta Petrolei Sinica, 2018, 39(1): 320-326.
doi: 10.7623/syxb201803007 |
|
[5] |
ZHOU J, CHEN M, JIN Y, et al. Analysis of fracture propagation behaviour and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(7): 1143-1152.
doi: 10.1016/j.ijrmms.2008.01.001 |
[6] | 范铁刚, 张广清. 注液速率及压裂液黏度对煤层水力裂缝形态的影响[J]. 中国石油大学学报(自然科学版), 2014, 38(4):117-123. |
FAN Tiegang, ZHANG Guangqing. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal[J]. Journal of China University of Petroleum, 2014, 38(4): 117-123. | |
[7] | 考佳玮, 金衍, 付卫能, 等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6):37-44. |
KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 37-44. | |
[8] | 侯冰, 程万, 陈勉, 等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12):81-86. |
HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81-86. | |
[9] | 曾义金, 周俊, 王海涛, 等. 深层页岩真三轴变排量水力压裂物理模拟研究[J]. 岩石力学与工程学报, 2019, 38(9):1758-1766. |
ZENG Yijin, ZHOU Jun, WANG Haitao, et al. Research on true triaxial hydraulic fracturing in deep shale with varying pumping rates[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1758-1766. | |
[10] |
BEHNIA M, GOSHTASBI K, MARJI M F, et al. Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media[J]. Acta Geotechnica, 2015, 10(4): 533-546.
doi: 10.1007/s11440-014-0332-1 |
[11] | WU K, OLSON J E. Numerical investigation of complex hydraulic-fracture development in naturally fractured reservoirs[J]. SPE Production & Operations, 2016, 31(4): 38-52. |
[12] |
TANG J Z, WU K, LI Y C, et al. Numerical investigation of the interactions between hydraulic fracture and bedding planes with non-orthogonal approach angle[J]. Engineering Fracture Mechanics, 2018, 200: 1-16.
doi: 10.1016/j.engfracmech.2018.07.010 |
[13] |
CHANG X, GUO Y, ZHOU J, et al. Numerical and experimental investigations of the interactions between hydraulic and natural fractures in shale formations[J]. Energies, 2018, 11(10): 2541.
doi: 10.3390/en11102541 |
[14] | CHEN Z, YANG Z, WANG M. Hydro-mechanical coupled mechanisms of hydraulic fracture propagation in rocks with cemented natural fractures[J]. Journal of Petroleum Science & Engineering, 2018, 163: 421-434. |
[15] |
LIU Z, XU H, ZHAO Z, et al. Modeling of interaction between the propagating fracture and multiple pre-existing cemented discontinuities in shale[J]. Rock Mechanics and Rock Engineering, 2019, 52(6): 1993-2001.
doi: 10.1007/s00603-018-1699-3 |
[16] | GUO J C, ZHAO X, ZHU H Y, et al. Numerical simulation of interaction of hydraulic fracture and natural fracture based on the cohesive zone finite element method[J]. Journal of Natural Gas Science & Engineering, 2015, 25: 180-188. |
[17] |
CORDERO J A R, SANCHEZ E C M, ROEHL D, et al. Hydro-mechanical modeling of hydraulic fracture propagation and its interactions with frictional natural fractures[J]. Computers and Geotechnics, 2019, 111: 290-300.
doi: 10.1016/j.compgeo.2019.03.020 |
[18] |
SUO Y, CHEN Z X, YAN H, et al. Using cohesive zone model to simulate the hydraulic fracture interaction with natural fracture in poro-viscoelastic formation[J]. Energies, 2019, 12(7): 1254.
doi: 10.3390/en12071254 |
[19] |
DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded-hydraulic-fracture propagation: Accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575-581.
doi: 10.2118/124884-PA |
[20] |
WANG X L, SHI F, LIU C, et al. Extended finite element simulation of fracture network propagation in formation containing frictional and cemented natural fractures[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 309-324.
doi: 10.1016/j.jngse.2017.12.013 |
[21] |
SHI F, WANG X, LIU C, et al. An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures[J]. Engineering Fracture Mechanics, 2017, 173: 64-90.
doi: 10.1016/j.engfracmech.2017.01.025 |
[22] | NGUYEN T T, YVONNET J, ZHU Q Z, et al. A phase-field method for computational modeling of interfacial damage interacting with crack propagation in realistic microstructures obtained by microtomography[J]. Computer Methods in Applied Mechanics & Engineering, 2016, 312: 567-595. |
[23] |
LIANG X, YVONNET J, GHABEZLOO S. Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media[J]. Engineering Fracture Mechanics, 2017, 186: 158-180.
doi: 10.1016/j.engfracmech.2017.10.005 |
[24] |
MIEHE C, MAUTHE S. Phase field modeling of fracture in multi-physics problems. Part Ⅲ. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304(1): 619-655.
doi: 10.1016/j.cma.2015.09.021 |
[25] | 易良平, 胡滨, 李小刚, 等. 基于相场法的煤砂互层水力裂缝纵向延伸计算模型[J]. 煤炭学报, 2020, 45(S2):706-716. |
YI Liangping, HU Bin, LI Xiaogang, et al. Calculation model of hydraulic crack vertical propagation in coal-sand interbedded formation based on the phase field method[J]. Journal of China Coal Society, 2020, 45(S2): 706-716. | |
[26] | FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(8): 1319-1342. |
[27] |
BOURDIN B, FRANFORT G A, MARIGO J J. The variational approach to fracture[J]. Journal of Elasticity, 2008, 91(1): 5-148.
doi: 10.1007/s10659-007-9107-3 |
[28] |
MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations[J]. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273-1311.
doi: 10.1002/nme.2861 |
[29] |
ZHOU S W, RABCZUK T, ZHUANG X Y. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies[J]. Advances in Engineering Software, 2018, 122: 31-49.
doi: 10.1016/j.advengsoft.2018.03.012 |
[30] |
ZHOU S W, ZHUANG X Y, RABCZUK T. A phase-field modeling approach of fracture propagation in poroelastic media[J]. Engineering Geology, 2018, 240(5): 189-203.
doi: 10.1016/j.enggeo.2018.04.008 |
[31] | 易良平. 致密砂岩储层水力压裂裂缝延伸关键理论问题研究[D]. 成都: 西南石油大学, 2020. |
YI Liangping. Study on key theoretical problems of hydraulic fracture extension in the tight sandstone reservoir[D]. Chengdu: Southwest Petroleum University, 2020. | |
[32] |
BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941, 12(2): 155-164.
doi: 10.1063/1.1712886 |
[33] |
EMDADI A, FAHRENHOLTZ W G, HILMAS G E, et al. A modified phase-field model for quantitative simulation of crack propagation in single-phase and multi-phase materials[J]. Engineering Fracture Mechanics, 2018, 200: 339-354.
doi: 10.1016/j.engfracmech.2018.07.038 |
[1] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[2] | LI Xiaogang, HE Jiangang, YANG Zhaozhong, YI Liangping, HUANG Liuke, DU Bodi, ZHANG Jingqiang. Fracture characteristics based on discrete element method [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 348-357. |
[3] | ZHOU Xin,LIU Xiangjun,DING Yi,LIANG Lixi,LIU Yexuan. Simulation of intersecting hydraulic fractures with natural fractures considering layer barrier effect [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 515-525. |
[4] | SUN Xiaoqin. Poststack fracture prediction technology of shale gas reservoir based on combination of well and seismic in Nanchuan [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(3): 462-467. |
[5] | YE Shen,QIAO Jiangmei,LI Tongchun. Numerical simulation of influence of water injection pressure and cave internal pressure on fracture propagation [J]. Reservoir Evaluation and Development, 2022, 12(2): 382-390. |
[6] | HE Le,YUAN Canming,GONG Wei. Influencing factors and preventing measures of intra-well frac hit in shale gas [J]. Reservoir Evaluation and Development, 2020, 10(5): 63-69. |
[7] | JIANG Yanbo. Experiment and characterization on phase behavior of CO2 and crude oil in porous media [J]. Reservoir Evaluation and Development, 2020, 10(3): 23-27. |
[8] | WENG Zhen,ZHANG Yaofeng,WU Yiming,FAN Kun,WANG Fang. Experimental study on effects of caves in reservoirs on hydraulic fractures propagation [J]. Reservoir Evaluation and Development, 2019, 9(6): 42-46. |
[9] | Shi Leiting,Zhu Shijie,Ma Jie,Yang Mei,Peng Yangping,Ye Zhongbin. Numerical simulation of tight oil extraction with supercritical CO2 [J]. Reservoir Evaluation and Development, 2019, 9(3): 25-31. |
[10] | Li Yongming,Wu Lei,Chen Xi. Research on productivity of fractured horizontal wells in shale gas reservoirs based on anomalous diffusion model [J]. Reservoir Evaluation and Development, 2019, 9(1): 72-79. |
[11] | Cao Jun,Tang Hai,Lyu Dongliang,Wu Jinwei. Influence of stress sensitive differences on natural well productivity in fractured reservoirs [J]. Reservoir Evaluation and Development, 2019, 9(1): 23-28. |
[12] | Wei Xu,Zhang Yongping,Bo Yunhe,Guo Hao,Guo Yuhang,Wu Senhao. Application of discrete fracture network modeling technology in mudstone fractured reservoir in Daqing oil region [J]. Reservoir Evaluation and Development, 2018, 8(4): 11-16. |
|