Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (4): 484-494.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.010
• Comprehensive Research • Previous Articles Next Articles
ZHAO Yulong1,2(),YANG Bo1,2,CAO Cheng1,2(),ZHANG Liehui1,2,ZHOU Xiang1,2,HUANG Chenzhi3,RUI Yiming3,LI Jinlong4
Received:
2022-07-07
Online:
2023-09-01
Published:
2023-08-26
CLC Number:
Yulong ZHAO,Bo YANG,Cheng CAO, et al. Research progress of evaluation of CO2 storage potential and suitability assessment indexes in saline aquifers[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 484-494.
Table 2
Phases of CO2 geological sequestration potential assessment and suitability evaluation in China[36]"
工作阶段 | 研究对象 | 等级 | 潜力级别 | 目的、任务 |
---|---|---|---|---|
国家级潜力 | 沉积盆地 | E | 预测潜力 | 以单个盆地为单元进行适宜性评价并排序,评价出适宜CO2地质封存的盆地 |
盆地级潜力 | 盆地一级构造单元 | D | 推定潜力 | 以单个盆地一级构造为单元进行适宜性评价,评价出盆地中CO2地质封存远景区 |
目标区级潜力 | 盆地圈闭级构造单元 | C | 控制潜力 | 制定CO2地质封存目标靶区选择标准,在圈闭内比选出封存目标靶区 |
场地级潜力 | 封存场地 | B | 基础封存量 | 对场地开展地质封存勘查和评估,指导灌注工程的设计 |
灌注级潜力 | 地质封存工程场地 | A | 工程封存量 | 开展CO2灌注工程监测,根据灌注工程的运行状况,对场地灌注量及环境风险进行评估 |
Table 3
Indicator system for suitability evaluation of CO2 geological sequestration in saline aquifers"
指标层 | 指标亚层 | 指标 | 评价分级 | ||||
---|---|---|---|---|---|---|---|
适宜 | 较适宜 | 一般 | 较不适宜 | 不适宜 | |||
安全性 | 盖层 封闭性 | 岩性 | 膏岩、泥岩、 钙质泥岩 | 含砂泥岩、 含粉砂泥岩 | 粉砂质泥岩、 砂质泥岩 | 泥质粉砂岩、 泥质砂岩 | 页岩、致密灰岩 |
主力盖层埋深/m | [800, 1 200) | [1 200, 1 700) | [1 700, 3 500) | [3 500, 4 000) | [0, 800) | ||
单层厚度/m | [20, 25) | [15, 20) | [10, 15) | [5, 10) | [0, 5) | ||
累计厚度/m | [300, 350) | [250, 300) | [200, 250) | [150, 200) | [0, 150) | ||
分布连续性 | 连续稳定 | 较连续、较稳定 | 连续性中等、 较稳定 | 连续性较差、 较不稳定 | 连续性差、 不稳定 | ||
断裂条件 | 断裂特征 | 有限断层、裂缝 | 有限断层、裂缝 | 中等断层、 中等裂缝 | 较大断层、 较大裂缝 | 大断层、 大裂缝 | |
断裂封闭性 | 好 | 较好 | 中等 | 较差 | 差 | ||
地震火山条件 | 地震 | 极少发生、 距离远 | 少有发生、 距离较远 | 有发生、 距离中等 | 较多发生、 距离较近 | 多发生、 距离近 | |
地震峰值加速度 (g=9.81 m/s2) | [0, 0.05) | [0.05, 0.15) | [0.15, 0.30) | [0.3, 0.4) | [0.4, 0.5) | ||
火山 | 极少发生、 距离远 | 少有发生、 距离较远 | 有发生、 距离中等 | 较多发生、 距离较近 | 多发生、 距离近 | ||
水动力 条件 | 水动力作用 | 水力封闭作用 | 水力封闭—封堵作用 | 水力封堵作用 | 水力封堵—运移 逸散作用 | 水力运移逸散 作用 | |
技术性 | 储层条件 | 岩性 | 碎屑岩 | 碎屑岩、碳酸盐岩混合 | 碳酸盐岩 | 岩浆岩、变质岩等特殊岩体 | |
埋藏深度/m | [800, 1 200) | [1 200, 1 700) | [1 700, 3 500) | [3 500, 4 000) | [0, 800) | ||
厚度/m | [50, 60) | [40, 50) | [30, 40) | [20, 30) | [0, 20) | ||
孔隙度/% | 砂岩[20, 30) | [15, 20) | [10, 15) | [5, 10) | [0, 5) | ||
碳酸盐岩[16, 20) | [12, 16) | [8, 12) | [4, 8) | [0, 4) | |||
渗透率/10-3 μm2 | 砂岩[50, 100) | [35, 50) | [25, 35) | [10, 25) | [0, 10) | ||
碳酸盐岩[10, 16) | [8, 10) | [6, 8) | [4, 6) | [0, 4) | |||
渗透率变异系数 | [0, 0.5) | [0.50, 0.55) | [0.55, 0.60) | [0.60, 0.65) | [0.65, 0.70) | ||
封存潜力 | 推定潜力/108 t | [50, 100) | [25, 50) | [0.5, 25.0) | [0.02, 0.50) | [0, 0.02) | |
单位面积推定潜力/(104 t/km2) | [200, 250) | [100, 200) | [50, 100) | [1, 50) | [0, 1) | ||
地热条件 | 地表温度/℃ | [0, 2) | [2, 3) | [3, 10) | [10, 25) | [25, 30) | |
地温梯度/(℃/hm) | [0, 2) | [2, 3) | [3, 4) | [4, 5) | [5, 6) | ||
地热流值 | [0, 54.5) | [54.5, 65.0) | [65, 75) | [75, 85) | [85, 100) | ||
经济性 | 碳源规模/(106 t/a) | [50, 100) | [25, 50) | [10, 25) | [5, 10) | [0, 5) | |
碳源距离/km | [0, 50) | [50, 100) | [100, 150) | [150, 200) | [200, 250) | ||
运输条件 | 好 | 较好 | 一般 | 较差 | 差 | ||
基础设施 | 完善 | 较完善 | 中等 | 不完善 | 无 | ||
收益 | 远大于成本 | 大于成本 | 持平 | 小于成本 | 远小于成本 | ||
社会环境 | 社会认可条件 | 公众认可度高、 法规待完善 | 公众认可度较高、法规较完善 | 公众认可度一般、法规需修改 | 公众认可度差、法规需制定 | 公众排斥 | |
人口密度/(人/km2) | [0, 25) | [25, 50) | [50, 100) | [100, 200) | [200, 250) | ||
地理位置 | 沙漠未利用土地 | 牧草地 | 林地 | 耕地、园地 | 居民点及工矿 用地或水域 |
[1] | IPCC. Summary for policymakers[R]. Cambridge: Cambridge University Press, 2018. |
[2] | IPCC. Carbon dioxide capture and storage[R]. Cambridge: Cambridge University Press, 2005. |
[3] | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国 CCUS 路径研究[R]. 北京: 生态环境部环境规划院, 2021. |
CAI Bofeng, LI Qi, ZHANG Xian, et al. Annual report of carbon dioxide capture, utilization and storage(CCUS) in China(2021)—China CCUS path research[R]. Beijing: Environmental Planning Institute of the Ministry of Ecology and Environment, 2021. | |
[4] | 朱佩誉. CO2在咸水层的地质封存及应用进展[J]. 洁净煤技术, 2021, 27(S2): 33-38. |
ZHU Peiyu. Review on CO2 geological storage in saline formations[J]. Clean Coal Technology, 2021, 27(S2): 33-38. | |
[5] |
ZHAO X L, LIAO X W, WANG W F, et al. The CO2 storage capacity evaluation: Methodology and determination of key factors[J]. Journal of the Energy Institute, 2014, 87(4): 297-305.
doi: 10.1016/j.joei.2014.03.032 |
[6] | BENTHAM M, KIRBY M. CO2 storage in saline aquifers[J]. Oil & Gas Science and Technology, 2005, 60(3): 559-567. |
[7] | KOIDE H, TAZAKI Y, NOGUCHI Y, et al. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs[J]. Energy Conversion & Management, 1992, 33(5-8): 619-626. |
[8] |
GOODMAN A, HAKALA A, BROMHAL G, et al. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 952-965.
doi: 10.1016/j.ijggc.2011.03.010 |
[9] |
BACHU S. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 2015, 40: 188-202.
doi: 10.1016/j.ijggc.2015.01.007 |
[10] |
BACHU S, BONIJOLY D, BRADSHAW J, et al. CO2 storage capacity estimation: Methodology and gaps[J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430-443.
doi: 10.1016/S1750-5836(07)00086-2 |
[11] | 刁玉杰, 朱国维, 金晓琳, 等. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 2017, 36(6): 1088-1095. |
DIAO Yujie, ZHU Guowei, JIN Xiaolin, et al. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 2017, 36(6): 1088-1095. | |
[12] | 师庆三. 碳中和约束下新疆塔里木, 准噶尔, 吐哈盆地CO2理论储存潜力评估[J]. 环境与可持续发展, 2021, 46(5): 99-105. |
SHI Qingsan. Evaluation of theoretical CO2 storage potential capacity in Tarim, Junggar, and Turpan-Hagar basins of Xinjiang under carbon neutrality constraints[J]. Environment and Sustainable Development, 2021, 46(5): 99-105. | |
[13] | 李琦, 魏亚妮, 刘桂臻. 中国沉积盆地深部CO2地质封存联合咸水开采容量评估[J]. 南水北调与水利科技, 2013, 11(4): 93-96. |
LI Qi, WEI Ya’ni, LIU Guizhen. Assessment of CO2 storage capacity and saline water development in sedimentary basins of China[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(4): 93-96. | |
[14] | 刘廷, 马鑫, 刁玉杰, 等. 国内外CO2地质封存潜力评价方法研究现状[J]. 中国地质调查, 2021, 8(4): 101-108. |
LIU Ting, MA Xin, DIAO Yujie, et al. Research status of CO2 geological storage potential evaluation methods at home and abroad[J]. Geological Survey of China, 2021, 8(4): 101-108. | |
[15] |
PRATHER C A, BRAY J M, SEYMOUR J D, et al. NMR study comparing capillary trapping in Berea sandstone of air, carbon dioxide, and supercritical carbon dioxide after imbibition of water[J]. Water Resources Research, 2016, 52(2): 713-724.
doi: 10.1002/wrcr.v52.2 |
[16] | 胡智凯, 李铱, 索瑞厅, 等. CO2纯度对咸水层碳封存过程中残余水的影响[J]. 高校地质学报, 2023, 29(1): 57-69. |
HU Zhikai, LI Yi, SUO Ruiting, et al. Effects of CO2 purity on residual water during carbon sequestration in deep saline aquifers[J]. Geological Journal of China Universities, 2023, 29(1): 57-69. | |
[17] |
CHEN H, YU H, ZHOU B, et al. Storage mechanism and dynamic characteristics of CO2 dissolution in saline aquifers[J]. Energy & Fuels, 2023, 37(5): 3875-3885.
doi: 10.1021/acs.energyfuels.2c03987 |
[18] | BACHU S, ADAMS J J. Sequestration of CO2 in geological media in response to climate change: Capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion & Management, 2003, 44(20): 3151-3175. |
[19] | 李小春, 刘延锋, 白冰, 等. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 2006, 25(5): 963-963. |
LI Xiaochun, LIU Yanfeng, BAI Bing, et al. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 963-963. | |
[20] | 项力, 杨章贤. 安徽省沉积盆地咸水含水层二氧化碳地质储存潜力研究[J]. 安徽地质, 2016, 26(4): 291-293. |
XIANG Li, YANG Zhangxian. Study on the geological storing capacity of CO2 in brine aquifer in the sedimentary basin in Anhui Province[J]. Geology of Anhui, 2016, 26(4): 291-293. | |
[21] | 杨章贤, 汪定圣, 董迎春. 安徽省二氧化碳地质储存潜力评价[J]. 西部探矿工程, 2022, 30(11): 107-113. |
YANG Zhangxian, WANG Dingsheng, DONG Yingchun. Evaluation of geological storage potential of carbon dioxide in Anhui Province[J]. West-China Exploration Engineering, 2022, 30(11): 107-113. | |
[22] | 于立松, 张卫东, 吴双亮, 等. 二氧化碳在深部盐水层中溶解封存规律的研究进展[J]. 新能源进展, 2015, 3(1): 75-80. |
YU Lisong, ZHANG Weidong, WU Shuangliang, et al. Research on dissolved sequestration of CO2 in deep saline aquifers[J]. Advances in New and Renewable Energy, 2015, 3(1): 75-80. | |
[23] |
DUAN Z Z, SUN R, ZHU C, et al. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2 000 bar[J]. Chemical Geology, 2003, 193(3-4): 257-271.
doi: 10.1016/S0009-2541(02)00263-2 |
[24] |
ROSENBAUER R J, KOKSALAN T, PALANDRI J L. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers[J]. Fuel Processing Technology, 2005, 86(14-15): 1581-1597.
doi: 10.1016/j.fuproc.2005.01.011 |
[25] |
GIAMMAR D E, BRUANT JR R G, PETERS C A. Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide[J]. Chemical Geology, 2005, 217(3-4): 257-276.
doi: 10.1016/j.chemgeo.2004.12.013 |
[26] |
XU T F, APPS J A, PRUESS K. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers[J]. Applied Geochemistry, 2004, 19(6): 917-936.
doi: 10.1016/j.apgeochem.2003.11.003 |
[27] | 李万伦, 陈晶, 贾凌霄, 等. 玄武岩CO2地质封存研究进展[J]. 地质论评, 2022, 68(2): 648-657. |
LI Wanlun, CHEN Jing, JIA Lingxiao, et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review, 2022, 68(2): 648-657. | |
[28] |
DING S, YI X, JIANG H, et al. CO2 storage capacity estimation in oil reservoirs by solubility and mineral trapping[J]. Applied Geochemistry, 2018, 89: 121-128.
doi: 10.1016/j.apgeochem.2017.12.002 |
[29] |
叶航, 郝宁, 刘琦. CO2咸水层封存关键参数及其实验表征技术研究进展[J]. 发电技术, 2022, 43(4): 562-573.
doi: 10.12096/j.2096-4528.pgt.22090 |
YE Hang, HAO Ning, LIU Qi. Review on key parameters and characterization technology of CO2 sequestration mechanism in saline aquifers[J]. Power Generation Technology, 2022, 43(4): 562-573.
doi: 10.12096/j.2096-4528.pgt.22090 |
|
[30] | 杨永智, 沈平平, 宋新民, 等. 盐水层温室气体地质埋存机理及潜力计算方法评价[J]. 吉林大学学报:地球科学版, 2009, 39(4): 744-748. |
YANG Yongzhi, SHEN Pingping, SONG Xinmin, et al. Greenhouse gas geo-sequestration mechanism and capacity evaluation in aquifer[J]. Journal of Jilin University, 2009, 39(4): 744-748. | |
[31] | 李琴, 李治平, 胡云鹏, 等. 深部盐水层CO2埋藏量计算方法研究与评价[J]. 特种油气藏, 2011, 18(5): 6-10. |
LI Qin, LI Zhiping, HU Yunpeng, et al. Assessment of CO2 storage calculation for deep saline aquifers[J]. Special Oil and Gas Reservoirs, 2011, 18(5): 6-10. | |
[32] | 徐威, 苏小四, 杜尚海, 等. 松辽盆地中央坳陷区深部咸水层二氧化碳储存潜力评价及其不确定性分析[J]. 第四纪研究, 2011, 31(3): 483-490. |
XU Wei, SU Xiaosi, DU Shanghai, et al. Capacity assessment and uncertainty analysis of CO2 storage in deep saline aquifer in the central depression of Songliao basin[J]. Quaternary Sciences, 2011, 31(3): 483-490. | |
[33] | 巫润建, 李国敏, 黎明, 等. 松辽盆地咸含水层埋存CO2储存容量初步估算[J]. 工程地质学报, 2009, 17(1): 100-104. |
WU Runjian, LI Guomin, LI Ming, et al. Estimation of CO2 storage capacity in deep saline aquifer in Songliao Sedimentary Basin[J]. Journal Engineering Geology, 2009, 17(1): 100-104. | |
[34] | 张冰, 梁凯强, 王维波, 等. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 2019, 6(3): 15-20. |
ZHANG Bing, LIANG Kaiqiang, WANG Weibo, et al. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 2019, 6(3): 15-20. | |
[35] | 李松, 李义连, 喻英, 等. 咸水层中二氧化碳地质封存有效系数的探究——以江汉盆地为例[J]. 安全与环境工程, 2015, 22(1): 82-89. |
LI Song, LI Yilian, YU Ying, et al. Research on the effective coefficient of CO2 geological sequestration in salinity aquifer: A case study of Jianghan Basin[J]. Safety and Environmental Engineering, 2015, 22(1): 82-89. | |
[36] | 郭建强, 文冬光, 张森琦, 等. 中国二氧化碳地质储存潜力评价与示范工程[J]. 中国地质调查, 2015, 2(4): 36-46. |
GUO Jianqiang, WEN Donguang, ZHANG Senqi, et al. Potential evaluation and demonstration project of CO2 geological storage in China[J]. Geological Survey of China, 2015, 2(4): 36-46. | |
[37] |
BACHU S. Screening and ranking of sedimentary basins for sequestration of CO2in geological media in response to climate change[J]. Environmental Geology, 2003, 44(3): 277-289.
doi: 10.1007/s00254-003-0762-9 |
[38] |
WEI N, LI X C, WANG Y, et al. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control, 2013, 12: 231-246.
doi: 10.1016/j.ijggc.2012.10.012 |
[39] | 杨国强, 苏小四, 杜尚海, 等. 松辽盆地CO2地质储存适宜性评价[J]. 地球学报, 2011, 32(5): 570-580. |
YANG Guoqiang, SU Xiaosi, DU Shanghai, et al. Suitability assessment of geological sequestration of CO2 in Songliao Basin[J]. Acta Geoscientica Sinica, 2011, 32(5): 570-580. | |
[40] | 李甫成, 张杨, 张晓娟, 等. 深部咸水层CO2地质储存适宜性评价方法研究[J]. 冰川冻土, 2014, 36(3): 649-660. |
LI Fucheng, ZHANG Yang, ZHANG Xiaojuan, et al. Suitability evaluation method of CO2 geological sequestration in deep saline aquifers[J]. Journal of Glaciology and Geocryology, 2014, 36(3): 649-660. | |
[41] | 杨霄翼, 刘延锋, 徐连三. 深部盐水层CO2地质埋存适宜性评价指标体系及其应用[J]. 安全与环境工程, 2014, 21(5): 71-77. |
YANG Xiaoyi, LIU Yanfeng, XU Liansan. Construction and application of comprehensive evaluation index system for the suitability of CO2 geological storage in deep saline aquifer[J]. Safety and Environmental Engineering, 2014, 21(5): 71-77. | |
[42] | 郑长远, 白刚刚, 师延霞, 等. 西宁盆地级(D级)CO2地质储存区域适宜性研究[J]. 青海大学学报(自然科学版), 2016, 34(4): 1-8. |
ZHENG Changyuan, BAI Ganggang, SHI Yanxia, et al. Geological storage suitability of carbon dioxide in Xining basin (level D)[J]. Journal of Qinghai University, 2016, 34(4): 1-8. | |
[43] | 杨红, 赵习森, 康宇龙, 等. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 2019, 15(1): 95-102. |
YANG Hong, ZHAO Xisen, KANG Yulong, et al. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research, 2019, 15(1): 95-102. | |
[44] |
OLDENBURG C M. Screening and ranking framework for geologic CO2 storage site selection on the basis of health, safety, and environmental risk[J]. Environmental Geology, 2008, 54(8): 1687-1694.
doi: 10.1007/s00254-007-0947-8 |
[45] |
RAMíREZ A, HAGEDOORN S, KRAMERS L, et al. Screening CO2 storage options in the Netherlands[J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 367-380.
doi: 10.1016/j.ijggc.2009.10.015 |
[46] | 刁玉杰, 张森琦, 郭建强, 等. 深部咸水层二氧化碳地质储存场地选址储盖层评价[J]. 岩土力学, 2012, 33(8): 2422-2428. |
DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Reservoir and caprock evaluation of CO2 geological storage site selection in deep saline aquifers[J]. Rock and Soil Mechanics, 2012, 33(8): 2422-2428. | |
[47] | 刁玉杰, 张森琦, 郭建强, 等. 深部咸水层CO2地质储存地质安全性评价方法研究[J]. 中国地质, 2011, 38(3): 786-792. |
DIAO Yujie, ZHANG Senqi, GUO Jianqiang, et al. Study of the geological safety evaluation method of CO2 geological storage in deep saline aquifer[J]. Geology in China, 2011, 38(3): 786-792. | |
[48] | 郭建强, 张森琦, 刁玉杰, 等. 深部咸水层CO2地质储存工程场地选址技术方法[J]. 吉林大学学报:地球科学版, 2011, 41(4): 1084-1091. |
GUO Jianqiang, ZHANG Senqi, DIAO Yujie, et al. Site selection method of CO2 geological storage in deep saline aquifers[J]. Journal of Jilin University, 2011, 41(4): 1084-1091. | |
[49] | 孟庆辉, 刘朝安, 贾宁, 等. 深部咸含水层CO2地质埋存厂址筛选方法研究[J]. 电力勘测设计, 2013, 36(3): 18-23. |
MENG Qinghui, LIU Chao’an, JIA Ning, et al. Research on site selection method of CO2[J]. Electric Power Survey & Design, 2013, 36(3): 18-23. | |
[50] |
LYU T X, WAN J H, ZHENG Y J, et al. Optimization of CO2 geological storage sites based on regional stability evaluation: A case study on geological storage in Tianjin, China[J]. Frontiers in Earth Science, 2022, 10: 955455.
doi: 10.3389/feart.2022.955455 |
[51] | 中国21世纪议程管理中心. 中国二氧化碳地质封存选址指南研究[M]. 北京: 地质出版社, 2012. |
The Administrative Center for China’s Agenda 21. Guidebook for selection of CO2 geological storage project sites in China[M]. Beijing: Geological Publishing House, 2012. | |
[52] | 曹默雷, 陈建平. CO2深部咸水层封存选址的地质评价[J]. 地质学报, 2022, 96(5): 1868-1882. |
CAO Molei, CHEN Jianping. The selection geological evaluation of the CO2 storage of the deep saline aquifer[J]. Acta Geologica Sinica, 2022, 96(5): 1868-1882. | |
[53] | 张炳江. 层次分析法及其应用案例[M]. 北京: 电子工业出版社, 2014. |
ZHANG Bingjiang. AHP and application cases[M]. Beijing: Publishing House of Electronics Industry, 2014. | |
[54] |
HE H J, TIAN C, JIN G, et al. Evaluating the CO2 geological storage suitability of coal-bearing sedimentary basins in China[J]. Environmental Monitoring and Assessment, 2020, 192(7): 1-13.
doi: 10.1007/s10661-019-7904-3 |
[55] |
LI F C, ZHANG Y, JIA X F, et al. A method for evaluating the suitability of CO2 geological storage in deep saline aquifers[J]. Acta Geologica Sinica, 2016, 90(5): 1838-1851.
doi: 10.1111/acgs.2016.90.issue-5 |
[1] | MIN Chao,LI Yingjun,LI Xiaogang,HUA Qing,ZHANG Na. Application of intuitive fuzzy MABAC method in optimizing favorable areas of low permeability carbonate gas reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 577-585. |
[2] | DONG Lifei, DONG Wenzhuo, ZHANG Qi, ZHONG Pinzhi, WANG Miao, YU Bo, WEI Haiyu, YANG Chao. Optimal prediction method for CO2 solubility in saline aquifers [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 35-41. |
[3] | TANG Liangrui,JIA Ying,YAN Jin,LI Guanghui,WANG Yong,HE Youwei,QING Jiazheng,TANG Yong. Study on calculation method of CO2 storage potential in depleted gas reservoir [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 858-863. |
[4] | Jin Yangjun,Chen Nai'an,Sheng Yi,Xu Yanmei,Wang Junliang,Pan Zhiyan. Study on the solubility of CO2 in simulated saline solution under geological storage condition [J]. Reservoir Evaluation and Development, 2019, 9(3): 77-81. |
|