Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (4): 505-512.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.012
• Comprehensive Research • Previous Articles Next Articles
CHEN Meng1(),XIE Weifeng1,ZHANG Yu2,YANG Guofeng1,LIU Xiangjun1
Received:
2022-01-10
Online:
2023-09-01
Published:
2023-08-26
CLC Number:
Meng CHEN,Weifeng XIE,Yu ZHANG, et al. Methods and application for water holdup calculation and flowing image based on array electromagnetic wave instrument in horizontal water-oil wells[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 505-512.
Table 3
Calculation results of five different water holdup calculation methods"
理论持水率 | 径向等高 面积法 | 相对误差 | 径向投影中点 切分面积法 | 相对误差 | 平均插值法 | 相对误差 | 分层界面法 | 相对误差 | 权系数法 | 相对误差 |
---|---|---|---|---|---|---|---|---|---|---|
100 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
90 | 86 | 4.4 | 92 | 2.2 | 75 | 16.7 | 20 | 77.8 | 91 | 1.1 |
70 | 63 | 10.0 | 67 | 4.2 | 59 | 15.7 | 39 | 44.3 | 64 | 8.6 |
50 | 39 | 22.0 | 36 | 28.0 | 43 | 14.0 | 61 | 22.0 | 39 | 22.0 |
30 | 18 | 40.0 | 24 | 20.0 | 35 | 16.7 | 29 | 3.3 | 28 | 6.7 |
10 | 21 | 110.0 | 16 | 60.0 | 30 | 200.0 | 20 | 100.0 | 21 | 110.0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
平均 | 26.6 | 16.3 | 37.6 | 35.3 | 21.2 |
Table 5
Water content values measured by electromagnetic wave water holding probes under different water content conditions"
探头 | 高含水 | 中含水 | 低含水 | 探头 | 高含水 | 中含水 | 低含水 | |
---|---|---|---|---|---|---|---|---|
1 | 1.00 | 0.13 | 0 | 7 | 0.48 | 0.58 | 0 | |
2 | 1.00 | 0.25 | 0 | 8 | 1.00 | 0.20 | 0 | |
3 | 1.00 | 0.60 | 0 | 9 | 0.97 | 0.28 | 0 | |
4 | 1.00 | 0.30 | 0 | 10 | 1.00 | 0.02 | 0 | |
5 | 1.00 | 0.53 | 0.25 | 11 | 1.00 | 0.02 | 0 | |
6 | 0.22 | 0.60 | 0.04 | 12 | 1.00 | 0 | 0 |
Table 8
Value of the electromagnetic wave water retention probe"
介质 | 1号 | 2号 | 3号 | 4号 | 5号 | 6号 | 7号 | 8号 | 9号 | 10号 | 11号 | 12号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
气 | 7 793 | 8 217 | 7 877 | 7 952 | 8 290 | 8 166 | 8 094 | 7 924 | 7 840 | 7 956 | 8 039 | 7 924 |
油 | 9 693 | 10 117 | 9 777 | 9 852 | 10 190 | 10 066 | 9 994 | 9 824 | 9 740 | 9 856 | 9 939 | 9 824 |
水 | 20 382 | 19 227 | 21 247 | 21 267 | 19 042 | 18 270 | 19 433 | 21 446 | 22 593 | 21 983 | 19 987 | 21 227 |
[1] |
宋红伟, 郭海敏, 郭帅, 等. 水平井油水两相分层流分相流量测量方法[J]. 石油勘探与开发, 2020, 47(3): 573-582.
doi: 10.11698/PED.2020.03.13 |
SONG Hongwei, GUO Haimin, GUO Shuai, et al. Partial phase flow rate measurements for stratified oil-water flow in horizontal wells[J]. Petroleum Exploration and Development, 2020, 47(3): 573-582.
doi: 10.11698/PED.2020.03.13 |
|
[2] | 邸德家, 毛军, 张同义, 等. 涪陵页岩气水平井产出剖面测试技术分析与应用[J]. 测井技术, 2016, 40(6): 731-735. |
DI Dejia, MAO Jun, ZHANG Tongyi, et al. Production profile testing analysis and its application in Fuling shale gas horizontal wells[J]. Well logging Technology, 2016, 40(6): 731-735. | |
[3] | 林日亿, 于程浩, 杨恒林, 等. 超深水平井钻井液循环温度场模拟计算与分析[J]. 石油与天然气化工, 2022, 51(3): 91-97. |
LIN Riyi, YU Chenghao, YANG Henglin, et al. Temperature field simulation and analysis of drilling fluid circulation in super deep horizontal wells[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 91-97. | |
[4] | 庞伟, 邸德家, 张同义, 等. 页岩气井产出剖面测井资料分析及应用[J]. 地球物理学进展, 2018, 33(2): 700-706. |
PANG Wei, DI Dejia, ZHANG Tongyi, et al. Analysis and application of production logging data in shale gas well[J]. Progress in Geophysics, 2018, 33(2): 700-706. | |
[5] | TRALLERO J L. Oil-water flow patterns in horizontal pipes[D]. Tulsa: The University of Tulsa, 1995: 112-126. |
[6] | TRALLERO J L. A study of oil-water flow patterns in horizontal pipes[J]. SPE Production & Facilities, 1997, 12(3): 165-172. |
[7] |
WEI Y, YU H Q, CHEN Q, et al. Measurement of water holdup in oil-water two-phase flows using coplanar microstrip transmission lines sensor[J]. IEEE sensors journal, 2019, 19(23): 11289-11300.
doi: 10.1109/JSEN.7361 |
[8] | 张振远, 张兴凯, 王文雄, 等. 油水两相螺旋流状态下射频法测量原油含水率的方法[J]. 石油与天然气化工, 2021, 50(1): 101-107. |
ZHANG Zhenyuan, ZHANG Xingkai, WANG Wenxiong, et al. Water content measurement by radio frequency method under the condition of oil-water two-phase spiral flow[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 101-107. | |
[9] | 胡金海, 刘兴斌, 张玉辉, 等. 阻抗式含水率计及其应用[J]. 测井技术, 1999(S1): 511-514. |
HU Jinhai, LIU Xingbin, ZHANG Yuhui. Impedance type moisture content meter and its application[J]. Well Logging Technology, 1999, 23(S1): 511-514. | |
[10] | 成云丽. 阵列式电阻持水率仪器研究[D]. 荆州: 长江大学, 2017. |
CHENG Yunli. Research of the array water holdup log tool based on resistance[D]. Jingzhou: Yangtze University, 2017. | |
[11] | BURRUS B. Determination of oil and water volumes by the capacitance method[C]// Paper SPE-1373-MS presented at the SPE Automation Symposium, Hobbs, New Mexico, April 1966. |
[12] | RYAN N D, HAYES D. A new multiphase holdup tool for horizontal wells[C]// Paper SPWLA-2001-V presented at the SPWLA 42nd Annual Logging Symposium, Houston, Texas, June 2001. |
[13] | 张海博, 郭海敏, 戴家才, 等. 电容阵列仪在大斜度井中的实验研究[J]. 测井技术, 2008, 32(4): 304-306. |
ZHANG Haibo, GUO Haimin, DAI Jiacai, et al. Experimental study of capacitance array imaging logging tool in high angle wells[J]. Well Logging Technology, 2008, 32(4): 304-306. | |
[14] |
LIU W X, JIN N D, WANG D Y, et al. A parallel-wire microwave resonant sensor for measurement of water holdup in high water-cut oil-in-water flows[J]. Flow Measurement and Instrumentation, 2020, 74(21): 101760.
doi: 10.1016/j.flowmeasinst.2020.101760 |
[15] | 王进旗, 强锡富, 陈建明, 等. 相位法测量油井含水率的研究[J]. 哈尔滨工业大学学报, 2002, 34(2): 245-247. |
WANG Jinqi, QIANG Xifu, CHEN Jianming, et al. Phase measurement of water content in oil well[J]. Journal of Harbin Institute of Technology, 2002, 34(2): 245-247. | |
[16] | 王进旗, 强锡富, 于英华. 基于相位法原油含水率仪的实验研究[J]. 计量学报, 2004, 25(4): 366-368. |
WANG Jinqi, QIANG Xifu, YU Yinghua. Test study of water cut tool in oil well based on phase method[J]. Acta Metrologica Sinica, 2004, 25(4): 366-368. | |
[17] | 余厚全, 魏勇, 汤天知, 等. 基于同轴传输线电磁波检测油水介质介电常数的理论分析[J]. 测井技术, 2012, 36(4): 361-364. |
YU Houquan, WEI Yong, TANG Tianzhi, et al. Theoretical analysis of measuring dielectric constant of oil-water mixture based on electromagnetic wave on coaxial line[J]. Well Logging Technology, 2012, 36(4): 361-364. | |
[18] | 陈强. 电磁波持水率计的电路设计[D]. 荆州: 长江大学, 2012. |
CHEN Qiang. Circuit design of the electromagnetic wave water holdup meter[D]. Jingzhou: Yangtze University, 2012. | |
[19] | 魏勇, 余厚全, 鲁保平, 等. 矿化度对电磁波相移法测量原油持水率的影响与校正研究[J]. 长江大学学报(自然版), 2015, 12(7): 30-33. |
WEI Yong, YU Houquan, LU Baoping, et al. The effect of salinity on electromagnetic wave method to measure water holdup of crude oil and correction research[J]. Journal of Yangtze University(Natural Science Edition), 2015, 12(7): 30-33. | |
[20] | 魏勇, 余厚全, 戴家才, 等. 基于CPW的油水两相流持水率检测方法研究[J]. 仪器仪表学报, 2017, 38(6): 1506-1515. |
WEI Yong, YU Houquan, DAI Jiacai, et al. Water holdup measurement of oil-water two-phase flow based on CPW[J]. Chinese Journal of Scientific Instrument, 2017, 38(6): 1506-1515. | |
[21] | 谢韦峰, 陈猛, 刘向君, 等. 温度和矿化度对电磁波持水率计响应的影响与校正[J]. 工程地球物理学报, 2021, 18(2): 229-236. |
XIE Weifeng, CHEN Meng, LIU Xiangjun, et al. Impact analysis and correction of the temperature and salinity for electromagnetic wave water holdup meter[J]. Chinese Journal of Engineering Geophysics, 2021, 18(2): 229-236. | |
[22] | 秦昊, 戴家才, 秦民君, 等. 低产水平井油水两相流阵列持水率计实验研究[J]. 测井技术, 2017, 41(6): 637-641. |
QIN Hao, DAI Jiacai, QIN Minjun, et al. Experimental study on oil-water two-phase flow array water holdup tool in horizontal well[J]. Well Logging Technology, 2017, 41(6): 637-641. | |
[23] | 史航宇, 宋红伟, 郭海敏, 等. 低产水平井油水两相阵列持水率仪数据处理方法比较[J]. 中国科技论文, 2021, 16(1): 12-19. |
SHI Hangyu, SONG Hongwei, GUO Haimin, et al. Comparative study on data processing methods of oil-water two-phase array water holdup instrument in low-yield horizontal well[J]. China Sciencepaper, 2021, 16(1): 12-19. | |
[24] | 朱绍武, 杨国峰, 戴家才. 水平井阵列持率仪测井资料成像算法研究[C]. 成都: 油气田勘探与开发国际会议论文集, 2017: 127-134. |
ZHU Shaowu, YANG Guofeng, DAI Jiacai. Research on imaging algorithm for logging data of array holdup instrument in horizontal well[C]. Chengdou: IFEDC, 2017: 127-134. | |
[25] | FRISCH G, PERKINS T, QUIREIN J. Integrating wellbore flow images with a conventional production log interpretation method[C]// Paper SPE-77782-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, September 2002. |
[26] | LIAO L, ZHU D, YOSHIDA N, et al. Interpretation of array production logging measurements in horizontal wells for flow profile[C]// Paper SPE-166502-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013. |
[27] | 黄志洁, 马焕英, 郭海敏, 等. 大斜度井电容阵列仪测井解释方法实验研究[J]. 石油天然气学报, 2008, 30(2): 107-110. |
HUANG Zhijie, MA Huanying. GUO Haiming, et al. Experimental study on capacitance array tool(CAT) logging interpretation in highly deviated wells[J]. Journal of Oil and Gas Technology, 2008, 30(2): 107-110. | |
[28] | 刘再斌, 吴锡令. 阵列电磁传感器测量气水层状流持水率实验研究[J]. 测井技术, 2011, 35(4): 303-307. |
LIU Zaibin, WU Xiling. Experimental study on measuring gas-water stratified flow water holdup with array electromagnetic sensor[J]. Well Logging Technology, 2011, 35(4): 303-307. | |
[29] | 吴锡令, 赵亮, 刘迪军. 多相流动电磁波成像测井基础研究[J]. 石油勘探与开发, 2000, 27(2): 79-82. |
WU XiLing, ZHAO Liang, LIU Dijun. A fundamental study on electromagnetic wave imaging logging in multiphase flow[J]. Petroleum Exploration and Development, 2000, 27(2): 79-82. | |
[30] | 戴家才, 郭海敏, 刘恒, 等. 电容阵列仪测井资料流动成像算法研究[J]. 测井技术, 2010, 34(1): 27-30. |
DAI Jiacai, GUO Haimin, LIU Heng, et al. The flow imaging algorithm study on logging data of capacitor array tool[J]. Well Logging Technology, 2010, 34(1): 27-30. | |
[31] | 董勇, 郭海敏, 李梦霞. 基于改进高斯权重的多相流动成像算法[J]. 测井技术, 2013, 37(1): 35-38. |
DONG Yong, GUO Haimin, LI Mengxia. An oil-gas-water three-phase flow imaging algorithm based on modified Gaussian weighted interpolation[J]. Well Logging Technology, 2013, 37(1): 35-38. | |
[32] | 董勇, 郭海敏, 李梦霞, 等. 基于CAT的水平管油水两相流动成像算法改进[J]. 测井技术, 2014, 38(3): 262-266. |
DONG Yong, GUO Haimin, LI Mengxia, et al. Modification of imaging algorithm for oil-water flow in a horizontal tube based on CAT data[J]. Well Logging Technology, 2014, 38(3): 262-266. |
[1] | WU Xi. Technology and practice for efficient development of coalbed methane horizontal wells in high-rank coal of Qinshui Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 167-174. |
[2] | LIN Weiqiang, CONG Peng, WANG Hong, WEI Zichen, YANG Yuntian, YAO Zhiqiang, QU Lili, MA Limin, WANG Fanglu. Application and discussion of geological guidance technology for deep coalbed methane horizontal wells: A case study of block X in Shenmu gas field, Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 300-309. |
[3] | ZHAO Haifeng, WANG Chengwang, XI Yue, WANG Chaowei. Study on dynamic stress field of fracturing in horizontal wells of deep coal seams: A case study of Daning-Jixian block in Ordos Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(2): 310-323. |
[4] | ZHANG Zhang, MENG Peng, YANG Wei, ZHANG Xiaolong, HUANG Qi, WANG Haoran. Characterization of braided river reservoir architecture based on seismic attribute stacking ensemble learning: A case study of the C-2 oilfield in the Bohai Bay Basin [J]. Petroleum Reservoir Evaluation and Development, 2025, 15(1): 64-72. |
[5] | KONG Xiangwei, XIE Xin, WANG Cunwu. Optimization of segmented fracturing parameters for coalbed methane horizontal wells based on comprehensive fracability index [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(6): 925-932. |
[6] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[7] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[8] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[9] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[10] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[11] | LUO Hongwen, ZHANG Qin, LI Haitao, XIANG Yuxing, LI Ying, PANG Wei, LIU Chang, YU Hao, WANG Yaning. Influence law of temperature profile for horizontal wells in tight oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685. |
[12] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[13] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[14] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[15] | YAO Hongsheng,YUN Lu,ZAN Ling,ZHANG Longsheng,QIU Weisheng. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 141-151. |
|