Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (4): 505-512.doi: 10.13809/j.cnki.cn32-1825/te.2023.04.012
• Comprehensive Research • Previous Articles Next Articles
CHEN Meng1(),XIE Weifeng1,ZHANG Yu2,YANG Guofeng1,LIU Xiangjun1
Received:
2022-01-10
Online:
2023-09-01
Published:
2023-08-26
CLC Number:
Meng CHEN,Weifeng XIE,Yu ZHANG, et al. Methods and application for water holdup calculation and flowing image based on array electromagnetic wave instrument in horizontal water-oil wells[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 505-512.
Table 3
Calculation results of five different water holdup calculation methods"
理论持水率 | 径向等高 面积法 | 相对误差 | 径向投影中点 切分面积法 | 相对误差 | 平均插值法 | 相对误差 | 分层界面法 | 相对误差 | 权系数法 | 相对误差 |
---|---|---|---|---|---|---|---|---|---|---|
100 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 | 100 | 0 |
90 | 86 | 4.4 | 92 | 2.2 | 75 | 16.7 | 20 | 77.8 | 91 | 1.1 |
70 | 63 | 10.0 | 67 | 4.2 | 59 | 15.7 | 39 | 44.3 | 64 | 8.6 |
50 | 39 | 22.0 | 36 | 28.0 | 43 | 14.0 | 61 | 22.0 | 39 | 22.0 |
30 | 18 | 40.0 | 24 | 20.0 | 35 | 16.7 | 29 | 3.3 | 28 | 6.7 |
10 | 21 | 110.0 | 16 | 60.0 | 30 | 200.0 | 20 | 100.0 | 21 | 110.0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
平均 | 26.6 | 16.3 | 37.6 | 35.3 | 21.2 |
Table 5
Water content values measured by electromagnetic wave water holding probes under different water content conditions"
探头 | 高含水 | 中含水 | 低含水 | 探头 | 高含水 | 中含水 | 低含水 | |
---|---|---|---|---|---|---|---|---|
1 | 1.00 | 0.13 | 0 | 7 | 0.48 | 0.58 | 0 | |
2 | 1.00 | 0.25 | 0 | 8 | 1.00 | 0.20 | 0 | |
3 | 1.00 | 0.60 | 0 | 9 | 0.97 | 0.28 | 0 | |
4 | 1.00 | 0.30 | 0 | 10 | 1.00 | 0.02 | 0 | |
5 | 1.00 | 0.53 | 0.25 | 11 | 1.00 | 0.02 | 0 | |
6 | 0.22 | 0.60 | 0.04 | 12 | 1.00 | 0 | 0 |
Table 8
Value of the electromagnetic wave water retention probe"
介质 | 1号 | 2号 | 3号 | 4号 | 5号 | 6号 | 7号 | 8号 | 9号 | 10号 | 11号 | 12号 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
气 | 7 793 | 8 217 | 7 877 | 7 952 | 8 290 | 8 166 | 8 094 | 7 924 | 7 840 | 7 956 | 8 039 | 7 924 |
油 | 9 693 | 10 117 | 9 777 | 9 852 | 10 190 | 10 066 | 9 994 | 9 824 | 9 740 | 9 856 | 9 939 | 9 824 |
水 | 20 382 | 19 227 | 21 247 | 21 267 | 19 042 | 18 270 | 19 433 | 21 446 | 22 593 | 21 983 | 19 987 | 21 227 |
[1] |
宋红伟, 郭海敏, 郭帅, 等. 水平井油水两相分层流分相流量测量方法[J]. 石油勘探与开发, 2020, 47(3): 573-582.
doi: 10.11698/PED.2020.03.13 |
SONG Hongwei, GUO Haimin, GUO Shuai, et al. Partial phase flow rate measurements for stratified oil-water flow in horizontal wells[J]. Petroleum Exploration and Development, 2020, 47(3): 573-582.
doi: 10.11698/PED.2020.03.13 |
|
[2] | 邸德家, 毛军, 张同义, 等. 涪陵页岩气水平井产出剖面测试技术分析与应用[J]. 测井技术, 2016, 40(6): 731-735. |
DI Dejia, MAO Jun, ZHANG Tongyi, et al. Production profile testing analysis and its application in Fuling shale gas horizontal wells[J]. Well logging Technology, 2016, 40(6): 731-735. | |
[3] | 林日亿, 于程浩, 杨恒林, 等. 超深水平井钻井液循环温度场模拟计算与分析[J]. 石油与天然气化工, 2022, 51(3): 91-97. |
LIN Riyi, YU Chenghao, YANG Henglin, et al. Temperature field simulation and analysis of drilling fluid circulation in super deep horizontal wells[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 91-97. | |
[4] | 庞伟, 邸德家, 张同义, 等. 页岩气井产出剖面测井资料分析及应用[J]. 地球物理学进展, 2018, 33(2): 700-706. |
PANG Wei, DI Dejia, ZHANG Tongyi, et al. Analysis and application of production logging data in shale gas well[J]. Progress in Geophysics, 2018, 33(2): 700-706. | |
[5] | TRALLERO J L. Oil-water flow patterns in horizontal pipes[D]. Tulsa: The University of Tulsa, 1995: 112-126. |
[6] | TRALLERO J L. A study of oil-water flow patterns in horizontal pipes[J]. SPE Production & Facilities, 1997, 12(3): 165-172. |
[7] |
WEI Y, YU H Q, CHEN Q, et al. Measurement of water holdup in oil-water two-phase flows using coplanar microstrip transmission lines sensor[J]. IEEE sensors journal, 2019, 19(23): 11289-11300.
doi: 10.1109/JSEN.7361 |
[8] | 张振远, 张兴凯, 王文雄, 等. 油水两相螺旋流状态下射频法测量原油含水率的方法[J]. 石油与天然气化工, 2021, 50(1): 101-107. |
ZHANG Zhenyuan, ZHANG Xingkai, WANG Wenxiong, et al. Water content measurement by radio frequency method under the condition of oil-water two-phase spiral flow[J]. Chemical Engineering of Oil & Gas, 2021, 50(1): 101-107. | |
[9] | 胡金海, 刘兴斌, 张玉辉, 等. 阻抗式含水率计及其应用[J]. 测井技术, 1999(S1): 511-514. |
HU Jinhai, LIU Xingbin, ZHANG Yuhui. Impedance type moisture content meter and its application[J]. Well Logging Technology, 1999, 23(S1): 511-514. | |
[10] | 成云丽. 阵列式电阻持水率仪器研究[D]. 荆州: 长江大学, 2017. |
CHENG Yunli. Research of the array water holdup log tool based on resistance[D]. Jingzhou: Yangtze University, 2017. | |
[11] | BURRUS B. Determination of oil and water volumes by the capacitance method[C]// Paper SPE-1373-MS presented at the SPE Automation Symposium, Hobbs, New Mexico, April 1966. |
[12] | RYAN N D, HAYES D. A new multiphase holdup tool for horizontal wells[C]// Paper SPWLA-2001-V presented at the SPWLA 42nd Annual Logging Symposium, Houston, Texas, June 2001. |
[13] | 张海博, 郭海敏, 戴家才, 等. 电容阵列仪在大斜度井中的实验研究[J]. 测井技术, 2008, 32(4): 304-306. |
ZHANG Haibo, GUO Haimin, DAI Jiacai, et al. Experimental study of capacitance array imaging logging tool in high angle wells[J]. Well Logging Technology, 2008, 32(4): 304-306. | |
[14] |
LIU W X, JIN N D, WANG D Y, et al. A parallel-wire microwave resonant sensor for measurement of water holdup in high water-cut oil-in-water flows[J]. Flow Measurement and Instrumentation, 2020, 74(21): 101760.
doi: 10.1016/j.flowmeasinst.2020.101760 |
[15] | 王进旗, 强锡富, 陈建明, 等. 相位法测量油井含水率的研究[J]. 哈尔滨工业大学学报, 2002, 34(2): 245-247. |
WANG Jinqi, QIANG Xifu, CHEN Jianming, et al. Phase measurement of water content in oil well[J]. Journal of Harbin Institute of Technology, 2002, 34(2): 245-247. | |
[16] | 王进旗, 强锡富, 于英华. 基于相位法原油含水率仪的实验研究[J]. 计量学报, 2004, 25(4): 366-368. |
WANG Jinqi, QIANG Xifu, YU Yinghua. Test study of water cut tool in oil well based on phase method[J]. Acta Metrologica Sinica, 2004, 25(4): 366-368. | |
[17] | 余厚全, 魏勇, 汤天知, 等. 基于同轴传输线电磁波检测油水介质介电常数的理论分析[J]. 测井技术, 2012, 36(4): 361-364. |
YU Houquan, WEI Yong, TANG Tianzhi, et al. Theoretical analysis of measuring dielectric constant of oil-water mixture based on electromagnetic wave on coaxial line[J]. Well Logging Technology, 2012, 36(4): 361-364. | |
[18] | 陈强. 电磁波持水率计的电路设计[D]. 荆州: 长江大学, 2012. |
CHEN Qiang. Circuit design of the electromagnetic wave water holdup meter[D]. Jingzhou: Yangtze University, 2012. | |
[19] | 魏勇, 余厚全, 鲁保平, 等. 矿化度对电磁波相移法测量原油持水率的影响与校正研究[J]. 长江大学学报(自然版), 2015, 12(7): 30-33. |
WEI Yong, YU Houquan, LU Baoping, et al. The effect of salinity on electromagnetic wave method to measure water holdup of crude oil and correction research[J]. Journal of Yangtze University(Natural Science Edition), 2015, 12(7): 30-33. | |
[20] | 魏勇, 余厚全, 戴家才, 等. 基于CPW的油水两相流持水率检测方法研究[J]. 仪器仪表学报, 2017, 38(6): 1506-1515. |
WEI Yong, YU Houquan, DAI Jiacai, et al. Water holdup measurement of oil-water two-phase flow based on CPW[J]. Chinese Journal of Scientific Instrument, 2017, 38(6): 1506-1515. | |
[21] | 谢韦峰, 陈猛, 刘向君, 等. 温度和矿化度对电磁波持水率计响应的影响与校正[J]. 工程地球物理学报, 2021, 18(2): 229-236. |
XIE Weifeng, CHEN Meng, LIU Xiangjun, et al. Impact analysis and correction of the temperature and salinity for electromagnetic wave water holdup meter[J]. Chinese Journal of Engineering Geophysics, 2021, 18(2): 229-236. | |
[22] | 秦昊, 戴家才, 秦民君, 等. 低产水平井油水两相流阵列持水率计实验研究[J]. 测井技术, 2017, 41(6): 637-641. |
QIN Hao, DAI Jiacai, QIN Minjun, et al. Experimental study on oil-water two-phase flow array water holdup tool in horizontal well[J]. Well Logging Technology, 2017, 41(6): 637-641. | |
[23] | 史航宇, 宋红伟, 郭海敏, 等. 低产水平井油水两相阵列持水率仪数据处理方法比较[J]. 中国科技论文, 2021, 16(1): 12-19. |
SHI Hangyu, SONG Hongwei, GUO Haimin, et al. Comparative study on data processing methods of oil-water two-phase array water holdup instrument in low-yield horizontal well[J]. China Sciencepaper, 2021, 16(1): 12-19. | |
[24] | 朱绍武, 杨国峰, 戴家才. 水平井阵列持率仪测井资料成像算法研究[C]. 成都: 油气田勘探与开发国际会议论文集, 2017: 127-134. |
ZHU Shaowu, YANG Guofeng, DAI Jiacai. Research on imaging algorithm for logging data of array holdup instrument in horizontal well[C]. Chengdou: IFEDC, 2017: 127-134. | |
[25] | FRISCH G, PERKINS T, QUIREIN J. Integrating wellbore flow images with a conventional production log interpretation method[C]// Paper SPE-77782-MS presented at the SPE Annual Technical Conference and Exhibition, San Antonio, Texas, September 2002. |
[26] | LIAO L, ZHU D, YOSHIDA N, et al. Interpretation of array production logging measurements in horizontal wells for flow profile[C]// Paper SPE-166502-MS presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, USA, September 2013. |
[27] | 黄志洁, 马焕英, 郭海敏, 等. 大斜度井电容阵列仪测井解释方法实验研究[J]. 石油天然气学报, 2008, 30(2): 107-110. |
HUANG Zhijie, MA Huanying. GUO Haiming, et al. Experimental study on capacitance array tool(CAT) logging interpretation in highly deviated wells[J]. Journal of Oil and Gas Technology, 2008, 30(2): 107-110. | |
[28] | 刘再斌, 吴锡令. 阵列电磁传感器测量气水层状流持水率实验研究[J]. 测井技术, 2011, 35(4): 303-307. |
LIU Zaibin, WU Xiling. Experimental study on measuring gas-water stratified flow water holdup with array electromagnetic sensor[J]. Well Logging Technology, 2011, 35(4): 303-307. | |
[29] | 吴锡令, 赵亮, 刘迪军. 多相流动电磁波成像测井基础研究[J]. 石油勘探与开发, 2000, 27(2): 79-82. |
WU XiLing, ZHAO Liang, LIU Dijun. A fundamental study on electromagnetic wave imaging logging in multiphase flow[J]. Petroleum Exploration and Development, 2000, 27(2): 79-82. | |
[30] | 戴家才, 郭海敏, 刘恒, 等. 电容阵列仪测井资料流动成像算法研究[J]. 测井技术, 2010, 34(1): 27-30. |
DAI Jiacai, GUO Haimin, LIU Heng, et al. The flow imaging algorithm study on logging data of capacitor array tool[J]. Well Logging Technology, 2010, 34(1): 27-30. | |
[31] | 董勇, 郭海敏, 李梦霞. 基于改进高斯权重的多相流动成像算法[J]. 测井技术, 2013, 37(1): 35-38. |
DONG Yong, GUO Haimin, LI Mengxia. An oil-gas-water three-phase flow imaging algorithm based on modified Gaussian weighted interpolation[J]. Well Logging Technology, 2013, 37(1): 35-38. | |
[32] | 董勇, 郭海敏, 李梦霞, 等. 基于CAT的水平管油水两相流动成像算法改进[J]. 测井技术, 2014, 38(3): 262-266. |
DONG Yong, GUO Haimin, LI Mengxia, et al. Modification of imaging algorithm for oil-water flow in a horizontal tube based on CAT data[J]. Well Logging Technology, 2014, 38(3): 262-266. |
[1] | ZHANG Yi, NING Chongru, CHEN Yazhou, JI Yulong, ZHAO Liyang, WANG Aifang, HUANG Jingjing, YU Kaiyi. Huff-n-puff technology and parameter optimization of large displacement water injection in tight oil reservoir [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 727-733. |
[2] | LIU Wei, CAO Xiaopeng, HU Huifang, CHENG Ziyan, BU Yahui. Production influencing factors analysis and fracturing parameters optimization of shale oil horizontal wells [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(5): 764-770. |
[3] | YANG Zhaozhong, YUAN Jianfeng, ZHANG Jingqiang, LI Xiaogang, ZHU Jingyi, HE Jiangang. Research progress and understanding of fracturing fractures in horizontal wells of marine shale in Sichuan Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 600-609. |
[4] | LI Xuebin,JIN Lixin,CHEN Chaofeng,YU Tianxi,XIANG Yingjie,YI Duo. Key technologies of horizontal well fracturing for deep coal-rock gas: A case study of Jurassic in Baijiahai area, Junggar Basin [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 629-637. |
[5] | ZHAO Haifeng, WANG Tengfei, LI Zhongbai, LIANG Wei, ZHANG Tao. Study on dynamic stress field for fracturing in horizontal well group of shale oil [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 352-363. |
[6] | LUO Hongwen, ZHANG Qin, LI Haitao, XIANG Yuxing, LI Ying, PANG Wei, LIU Chang, YU Hao, WANG Yaning. Influence law of temperature profile for horizontal wells in tight oil reservoirs [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685. |
[7] | ZHANG Fengxi, NIU Congcong, ZHANG Yichi. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702. |
[8] | HU Zhijian, LI Shuxin, WANG Jianjun, ZHOU Hong, ZHAO Yulong, ZHANG Liehui. Productivity evaluation of multi-stage fracturing horizontal wells in shale gas reservoir with complex artificial fracture occurrence [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 459-466. |
[9] | QIU Xiaoxue,ZHONG Guanghai,LI Xiansheng,CHEN Meng,LING Weitong. CFD simulation of flow characteristics of shale gas horizontal wells with different inclination [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(3): 340-347. |
[10] | YAO Hongsheng,YUN Lu,ZAN Ling,ZHANG Longsheng,QIU Weisheng. Development mode and practice of fault-block oriented shale oil well in the second member of Funing Formation, Qintong Sag, Subei Basin [J]. Reservoir Evaluation and Development, 2023, 13(2): 141-151. |
[11] | ZHANG Jinhong. Progress in Sinopec shale oil engineering technology [J]. Reservoir Evaluation and Development, 2023, 13(1): 1-8. |
[12] | WANG Xiaoqiang,ZHAO Li’an,WANG Zhiyuan,XIU Chunhong,JIA Guolong,DONG Yan,LU Detang. Data analysis method of pump shutdown pressure based on water hammer effect and cepstrum transformation [J]. Reservoir Evaluation and Development, 2023, 13(1): 108-116. |
[13] | HU Depeng. Injection-production features of polymer flooding for horizontal wells and influencing factors of development effects for well groups [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 809-815. |
[14] | TANG Botao,ZENG Ji,CHEN Weihua,CHEN Yixin,WANG Tao,LIU Cheng,FENG Feng. Multi cluster perforation optimization design method and its application effect of tight sandstone horizontal wells in Qiulin area, central Sichuan [J]. Reservoir Evaluation and Development, 2022, 12(2): 337-344. |
[15] | LIU Lu,WANG Yongfei,ZHAN Zedong,XIE Jinfeng. Main control factors of horizontal wells in J2s2 tight sandstone gas reservoir of Xinchang Gas Field [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 890-896. |
|