Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (5): 676-685.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.015
• Comprehensive Research • Previous Articles Next Articles
LUO Hongwen1(),ZHANG Qin1(),LI Haitao1,XIANG Yuxing1,LI Ying1,PANG Wei2,LIU Chang1,YU Hao1,WANG Yaning1
Received:
2022-05-23
Online:
2023-11-01
Published:
2023-10-26
CLC Number:
Hongwen LUO,Qin ZHANG,Haitao LI, et al. Influence law of temperature profile for horizontal wells in tight oil reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 676-685.
Table 1
Fundamental parameters of example well"
参数类型 | 参数名称 | 参数取值 |
---|---|---|
储层参数 | 储层长度/m | 1 500 |
储层宽度/m | 500 | |
储层厚度/m | 20 | |
储层中深/m | 2 150 | |
孔隙度/% | 15 | |
水平渗透率/10-3μm2 | 12 | |
垂向渗透率/10-3μm2 | 1 | |
地面温度/℃ | 20 | |
地温梯度/(℃ /m) | 0.03 | |
储层温度/℃ | 80 | |
地层压力/MPa | 20 | |
储层岩石 热力学参数 | 岩石密度/(kg/m3) | 2 380 |
岩石热容/[J/(kg·℃)] | 845 | |
总导热系数/[J/(m·s·℃)] | 3.46 | |
井筒参数 | 水平长度/m | 810 |
井筒直径/m | 0.2 | |
套管外径/m | 0.14 | |
套管内径/m | 0.12 | |
井壁粗糙度/m | 0.001 5 | |
套管导热系数/[J/(m·s·℃)] | 12 | |
水泥环导热系数/[J/(m·s·℃)] | 6.9 | |
流体物性 | 原油密度/[ kg/m3] | 900 |
原油黏度/MPa·s | 2 | |
原油热容/[J/(kg·℃)] | 2 000 | |
原油膨胀系数/(10-4/℃) | 4 | |
原油体积系数/(m3/m3) | 1.37 | |
原油热导率/[W/(m·℃)] | 0.14 | |
地层水密度/[kg/m3] | 1 000 | |
地层水黏度/MPa·s | 0.1 | |
地层水热容/[J/(kg·℃)] | 4230 | |
地层水热膨胀系数/(10-4/℃) | 2 | |
地层水体积系数/(m3/m3) | 1.02 |
Table 2
Basic parameters of simulation calculation"
参数类型 | 参数名称 | 参数取值 |
---|---|---|
储层参数 | 储层长度/m | 1 000 |
储层宽度/m | 500 | |
储层厚度/m | 20 | |
储层中深/m | 1 350 | |
孔隙度/% | 15 | |
水平渗透率/10-3μm2 | 20 | |
垂向渗透率/10-3μm2 | 2 | |
地面温度/℃ | 20 | |
地温梯度/(℃ /m) | 0.03 | |
储层温度/℃ | 80 | |
地层压力/MPa | 20 | |
储层岩石 热力学参数 | 岩石密度/(kg/m3) | 2 380 |
岩石热容/[J/(kg·℃)] | 845 | |
总导热系数/[J/(m·s·℃)] | 3.46 | |
井筒参数 | 水平长度/m | 700 |
井筒直径/m | 0.2 | |
套管外径/m | 0.14 | |
套管内径/m | 0.12 | |
井壁粗糙度/m | 0.001 5 | |
套管导热系数/[J/(m·s·℃)] | 12 | |
水泥环导热系数/[J/(m·s·℃)] | 6.9 | |
流体物性 | 原油密度/[ kg/m3] | 900 |
原油黏度/mPa·s | 2 | |
原油热容/[J/(kg·℃)] | 2 000 | |
原油膨胀系数/(10-4/℃) | 4 | |
原油体积系数/(m3/m3) | 1.37 | |
原油热导率/[W/(m·℃)] | 0.14 | |
地层水密度/[kg/m3] | 1 000 | |
地层水黏度/mPa·s | 0.1 | |
地层水热容/[J/(kg·℃)] | 4 230 | |
地层水热膨胀系数/(10-4/℃) | 2 | |
地层水体积系数/(m3/m3) | 1.02 |
Table 4
Orthogonal test analysis results"
实验编号 | Q | K | Kt | xf | FCD | D | θ | 平均温度差,℃ |
---|---|---|---|---|---|---|---|---|
实验1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0.294 |
实验2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 0.287 |
实验3 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 0.281 |
实验4 | 2 | 1 | 1 | 2 | 2 | 3 | 3 | 0.314 |
实验5 | 2 | 2 | 2 | 3 | 3 | 1 | 1 | 0.341 |
实验6 | 2 | 3 | 3 | 1 | 1 | 2 | 2 | 0.323 |
实验7 | 3 | 1 | 2 | 1 | 3 | 2 | 3 | 0.309 |
实验8 | 3 | 2 | 3 | 2 | 1 | 3 | 1 | 0.271 |
实验9 | 3 | 3 | 1 | 3 | 2 | 1 | 2 | 0.274 |
实验10 | 1 | 1 | 3 | 3 | 2 | 2 | 1 | 0.318 |
实验11 | 1 | 2 | 1 | 1 | 3 | 3 | 2 | 0.261 |
实验12 | 1 | 3 | 2 | 2 | 1 | 1 | 3 | 0.253 |
实验13 | 2 | 1 | 2 | 3 | 1 | 3 | 2 | 0.331 |
实验14 | 2 | 2 | 3 | 1 | 2 | 1 | 3 | 0.315 |
实验15 | 2 | 3 | 1 | 2 | 3 | 2 | 1 | 0.269 |
实验16 | 3 | 1 | 3 | 2 | 3 | 1 | 2 | 0.293 |
实验17 | 3 | 2 | 1 | 3 | 1 | 2 | 3 | 0.369 |
实验18 | 3 | 3 | 2 | 1 | 2 | 3 | 1 | 0.308 |
均值1 | 0.302 | 0.31 | 0.297 | 0.282 | 0.003 | 0.295 | 0.307 | |
均值2 | 0.281 | 0.307 | 0.305 | 0.315 | 0.295 | 0.313 | 0.303 | |
均值3 | 0.319 | 0.285 | 0.3 | 0.305 | 0.306 | 0.290 | 0.289 | |
极差(R) | 0.041 | 0.030 | 0.007 | 0.035 | 0.011 | 0.020 | 0.015 |
[1] | 李海涛, 罗红文, 向雨行, 等. DTS/DAS技术在水平井压裂监测中的应用现状与展望[J]. 新疆石油天然气, 2021, 17(4): 62-73. |
LI Haitao, LUO Hongwen, XIANG Yuxing, et al. The application status and prospect of DTS/DAS in fracturing monitoring of horizontal wells[J]. Xinjiang Oil & Gas, 2021, 17(4): 62-73. | |
[2] | 朱世琰. 基于分布式光纤温度测试的水平井产出剖面解释理论研究[D]. 成都: 西南石油大学, 2016. |
ZHU Shiyan. Theoretical study on the interpretation of inflow profile based on the distributed optical fiber temperature sensing[D]. Chengdu: Southwest Petroleum University, 2016. | |
[3] | YOSHIDA N. Modeling and interpretation of downhole temperature in a horizontal well with multiple fractures[D]. Texas: Texas A&M University, 2016. |
[4] | 蔡珺君. 水平井井筒温度预测及解释模型研究[D]. 成都: 西南石油大学, 2016. |
CAI Junjun. Study on prediction and interpretation model of wellbore temperature for a horizontal well[D]. Chengdu: Southwest Petroleum University, 2016. | |
[5] | 谭先红, 梁斌, 王帅, 等. 一种低渗储层凝析气藏气井产能评价方法研究[J]. 油气藏评价与开发, 2021, 11(5): 724-729. |
TAN Xianhong, LIANG Bin, WANG Shuai, et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 724-729. | |
[6] |
罗红文, 李海涛, 安树杰, 等. 致密气藏压裂水平井温度剖面影响因素分析[J]. 特种油气藏, 2021, 28(4): 150-157.
doi: 10.3969/j.issn.1006-6535.2021.04.021 |
LUO Hongwen, LI Haitao, AN Shujie, et al. Analysis of influencing factors of temperature profile of fractured horizontal well in tight gas reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(4): 150-157.
doi: 10.3969/j.issn.1006-6535.2021.04.021 |
|
[7] | UGUETO G A, HUCKABEE P T, MOLENAAR M M. Challenging assumption about fracture stimulation placement effectiveness using fiber optic distributed sensing diagnostics: Diversion, stage isolation and overflushing[C]// Paper SPE-173348-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2015. |
[8] | SOOKPRASONG P A, HURT R S, GILL C C. Downhole monitoring of multicluster, multistage horizontal well fracturing with fiber optic distributed acoustic sensing(DAS) and distributed temperature sensing(DTS)[C]// Paper IPTC-17972-MS presented at the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, December 2014. |
[9] | 罗红文, 李海涛, 刘会斌, 等. 低渗气藏两相渗流压裂水平井温度剖面预测[J]. 天然气地球科学, 2019, 30(3): 389-399. |
LUO Hongwen, LI Haitao, LIU Huibin, et al. Temperature profile prediction of two-phase percolation fractured horizontal well in low permeability gas reservoir[J]. Natural Gas Geoscience, 2019, 30(3): 389-399. | |
[10] |
罗红文, 李海涛, 李颖, 等. 低渗透气藏压裂水平井产出剖面与裂缝参数反演解释[J]. 石油学报, 2021, 42(7): 936-947.
doi: 10.7623/syxb202107008 |
LUO Hongwen, LI Haitao, LI Ying, et al. Inversion interpretation of production profile and fracture parameters of fractured horizontal Wells in low permeability gas reservoirs[J]. Acta Petrolei Sinica, 2021, 42(7): 936-947.
doi: 10.7623/syxb202107008 |
|
[11] | 李亚辉. 基于DTS数据的底水气藏水平井产出剖面解释模型及实现[D]. 成都: 西南石油大学, 2018. |
LI Yahui. Production profile interpretation model and realization of horizontal well in bottom water gas reservoir based on DTS data[D]. Chengdu: Southwest Petroleum University, 2018. | |
[12] | YOSHIOKA K, ZHU D, HILL A D, et al. Prediction of temperature changes caused by water or gas entry into a horizontal well[J]. SPE Production & Operations, 2007, 22(4): 425-433. |
[13] | LI Z Y, ZHU D. Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for water drive-reservoir[J]. SPE Production & Operations, 2010, 25(3): 296-304. |
[14] | YOSHIOKA K, ZHU D, Hill A D. A new inversion method to interpret flow profiles from distributed temperature and pressure measurements in horizontal wells[J]. SPE Production & Operations, 2009, 24(4): 510-521. |
[15] | 李军. 致密油藏储量升级潜力不确定性评价方法及应用[J]. 石油与天然气地质, 2021, 42(3): 755-764. |
LI Jun. Non-deterministic method for tight oil reserves up grade potential assessment and its application[J]. Oil & Gas Geology, 2021, 42(3): 755-764. | |
[16] | 刘传喜, 方文超, 秦学杰. 非常规油气藏压裂水平井动态缝网模拟方法及应用[J]. 石油与天然气地质, 2022, 43(3): 696-702. |
LIU Chuanxi, FANG Wenchao, QIN Xuejie. Simulation of dynamic fracture network in fractured horizontal well for unconventional reservoirs: Theory and application[J]. Oil & Gas Geology, 2022, 43(3): 696-702. | |
[17] | BIRD R B, STEWART W E, LIGHTFOOT E N, et al. Transport phenomena[J]. John Wiley & Sons, 1960, 28(2): 338-359. |
[18] | OLDENBURG C M. Joule-Thomson cooling due to CO2 injection into natural gas reservoirs[J]. Energy Conversion & Management, 2007, 48(6): 1808-1815. |
[19] |
LUO H W, LI Y, LI H T, et al. Simulated annealing algorithm-based inversion model to interpret flow rate profiles and fracture parameters for horizontal wells in unconventional gas reservoirs[J]. SPE Journal, 2021, 26(4): 1679-1699.
doi: 10.2118/205010-PA |
[20] |
LUO H W, LI H T, LU Y, et al. Inversion of distributed temperature measurements to interpret the flow profile for a multistage fractured horizontal well in low-permeability gas reservoir[J]. Applied Mathematical Modelling, 2020, 77: 360-377.
doi: 10.1016/j.apm.2019.07.047 |
[21] |
LUO H W, LI H T, TAN Y S, et al. A novel inversion approach for fracture parameters and inflow rates diagnosis in multistage fractured horizontal wells[J]. Journal of Petroleum Science and Engineering, 2020, 184: 106585.
doi: 10.1016/j.petrol.2019.106585 |
[22] | 李海涛, 罗红文, 李颖, 等. 基于DTS的页岩气藏压裂水平井产出剖面解释[J]. 天然气工业, 2021, 41(5): 66-75. |
LI Haitao, LUO Hongwen, LI Ying, et al. Production profile interpretation of fractured horizontal Wells in shale gas reservoirs based on DTS[J]. Natural Gas Industry, 2021, 41(5): 66-75. |
[1] | LU Cong, LI Qiuyue, GUO Jianchun. Research progress of distributed optical fiber sensing technology in hydraulic fracturing [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(4): 618-628. |
[2] | REN Hongda, DONG Jingfeng, GAO Jing, LIU Kaixin, ZHANG Jingchun, YIN Shuli. Field test of self-suspending proppant at Mahu sandstone reservoir in Xinjiang Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 513-518. |
[3] | PENG Kai,WANG Hao,QI Jingguo. Optimization of interval production working system based on continuous liquid level curve [J]. Reservoir Evaluation and Development, 2023, 13(2): 254-259. |
[4] | XIA Yun,ZHANG Liping,CHU Haoyuan,LI Jiaqi,MA Shaoyun. Low-cost technology of Jimsar shale oil: A case study of lower “sweet spot” [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 536-541. |
[5] | HUANG Bo,LEI Lin,TANG Wenjia,XU Ningwei,XIONG Wei. Stimulation mechanism of self suspension proppant in sand-carrying fracturing by water [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 459-464. |
[6] | LIU Shuangxing,PENG Bo,LIU Qi,LI Xingchun,XUE Ming. Study on impact of particle size of CO2 foam system for flooding on its performance [J]. Reservoir Evaluation and Development, 2020, 10(3): 33-38. |
[7] | WANG Leilei,LIANG Zhiyan,QIU Zhenjun,JIANG Lei,ZHAO Zhongwen. Optimization and application of tail pipe suspension device installed on electric submersible pump for super heavy oil [J]. Reservoir Evaluation and Development, 2020, 10(2): 107-110. |
[8] | LIANG Zhiyan,WANG Leilei,TANG Zhaoxing. Technology of heavy oil recovered by screw pump combined with water soluble viscosity in Tahe Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 111-115. |
[9] | GENG Yudi,ZHOU Linbo,WANG Yang,LI Chunyue. High conductivity acid fracturing technology in ultra-deep carbonate reservoir [J]. Reservoir Evaluation and Development, 2019, 9(6): 56-60. |
[10] | Wang Yuhai,Xia Haibang,Bao Kai,Qiu Weidong. Research and application of jet pump technology in drainage gas recovery of shale gas at atmospheric pressure [J]. Reservoir Evaluation and Development, 2019, 9(1): 80-84. |
|