Petroleum Reservoir Evaluation and Development ›› 2023, Vol. 13 ›› Issue (5): 695-702.doi: 10.13809/j.cnki.cn32-1825/te.2023.05.017
• Comprehensive Research • Previous Articles
ZHANG Fengxi1(),NIU Congcong2,ZHANG Yichi2
Received:
2022-06-08
Online:
2023-11-01
Published:
2023-10-26
CLC Number:
Fengxi ZHANG,Congcong NIU,Yichi ZHANG. Evaluation of multi-stage fracturing a horizontal well of low permeability reservoirs in East China Sea[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(5): 695-702.
Table 1
Summary of fracture model parameters"
参数名称 | 解释结果 | |||
---|---|---|---|---|
第1段 (趾端) | 第2段 | 第3段 | 第4段 | |
裂缝闭合应力/MPa | 57.50 | 58.40 | 62.00 | 59.60 |
平方根曲线净压力估算/MPa | 2.68 | 6.44 | 3.95 | 6.40 |
G-函数曲线净压力估算/MPa | 3.10 | 5.98 | 3.47 | 6.26 |
双对数曲线净压力估算/MPa | 3.00 | 6.73 | 4.21 | 5.33 |
净压力拟合值/MPa | 3.14 | 7.02 | 4.16 | 5.80 |
裂缝半长/m | 75.00 | 103.00 | 72.00 | 118.00 |
裂缝高度/m | 28.00 | 34.60 | 52.00 | 38.90 |
裂缝无因次导流能力 | 0.25 | 0.36 | 0.52 | 0.32 |
Table 3
EUR values measured by various methods"
方法 | 压裂前 | 压裂后 | ||
---|---|---|---|---|
气EUR/ 10? m3 | 油EUR/ 10? m3 | 气EUR/ 10? m3 | 油EUR/ 10? m3 | |
Duong+双曲递减 | 0.176 5 | 0.769 4 | 0.353 9 | 1.224 0 |
YM-SEPD+双曲递减 | 0.166 0 | 0.734 1 | 0.204 6 | 0.926 9 |
修正双曲递减 | 0.165 7 | 0.733 3 | 0.217 1 | 1.004 0 |
归一化产量/累产量 | 0.192 4 | 0.820 7 | 0.262 4 | 1.121 5 |
双曲递减 | 0.194 0 | 0.825 7 | 0.225 8 | 0.939 8 |
Table 4
Probability distribution of EUR"
概率 | 压裂前 | 压裂后 | ||
---|---|---|---|---|
气可采储量EUR/ 10? m3 | 油可采储量EUR/ 10? m3 | 气可采储量EUR/ 10? m3 | 油可采储量EUR/ 10? m3 | |
P?? | 0.128 0 | 0.675 4 | 0.120 9 | 0.714 6 |
P?? | 0.146 8 | 0.719 2 | 0.163 8 | 0.829 6 |
P?? | 0.173 5 | 0.776 9 | 0.237 7 | 0.996 2 |
P?? | 0.205 1 | 0.839 2 | 0.345 0 | 1.196 4 |
P? | 0.235 1 | 0.893 6 | 0.467 5 | 1.389 0 |
P??/P?? | 1.397 1 | 1.166 9 | 2.106 2 | 1.442 1 |
统计平均值 | 0.175 0 | 0.778 3 | 0.248 0 | 1.006 5 |
Swanson(斯万森)平均值 | 0.175 0 | 0.778 3 | 0.247 8 | 1.006 3 |
[1] | 徐文江, 肖茂林, 孙兴旺, 等. 海上低渗透油田水平井多级压裂先导试验[J]. 中国海上油气, 2017, 29(6): 108-114. |
XU Wenjiang, XIAO Maolin, SUN Xingwang, et al. Pilot test of multi-stage fracturing technology for horizontal wells in offshore low permeability reservoirs[J]. China Offshore Oil and Gas, 2017, 29(6): 108-114. | |
[2] | 杜福云, 黄杰, 阮新芳, 等. 海上水平井分段压裂技术现状与展望[J]. 海洋石油, 2021, 41(1): 22-26. |
DU Fuyun, HUANG Jie, RUAN Xinfang, et al. Status and prospect of offshore horizontal well staged fracturing technology[J]. Offshore Oil, 2021, 41(1): 22-26. | |
[3] | FISHER M K, WRIGHT C A, DAVIDSON B M, et al. Integrating fracture-mapping technologies to improve stimulations in the Barnett Shale[J]. SPE Production & Facilities, 2005, 20(2): 85-93. |
[4] | 赵博雄, 王忠仁, 刘瑞, 等. 国内外微地震监测技术综述[J]. 地球物理学进展, 2014, 29(4): 1882-1888. |
ZHAO Boxiong, WANG Zhongren, LIU Rui, et al. Review of microseismic monitoring technology research[J]. Progress in Geophysics, 2014, 29(4): 1882-1888. | |
[5] | 张晓林, 张峰, 李向阳, 等. 水力压裂对速度场及微地震定位的影响[J]. 地球物理学报, 2013, 56(10): 3552-3560. |
ZHANG Xiaolin, ZHANG Feng, LI Xiangyang, et al. The influence of hydraulic fracturing on velocity and microseismic location[J]. Chinese Journal of Geophysics, 2013, 56(10): 3552-3560. | |
[6] | SHENG G L, SU Y L, WANG W D, et al. Application of fractal geometry in evaluation of effective stimulated reservoir volume in shale gas reservoirs[J]. Fractals, 2017, 25(4): 62-69. |
[7] | 温庆志, 王淑婷, 高金剑, 等. 复杂缝网导流能力实验研究[J]. 油气地质与采收率, 2016, 23(5): 116-121. |
WEN Qingzhi, WANG Shuting, GAO Jinjian, et al. Research on flow conductivity experiment in complex fracture network[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(5): 116-121. | |
[8] | QU H Y, ZHOU F J, PENG Y, et al. ESRV and production optimization for the naturally fractured Keshen Tight Gas Reservoir[C]// Paper presented at the International Field Exploration and Development Conference, Chengdu, China, September 2017. |
[9] | 修乃岭, 严玉忠, 管保山, 等. 基于物质平衡原理对页岩气压裂储层有效改造体积进行估算方法研究[J]. 石油地质与工程, 2018, 32(6): 103-105. |
XIU Nailing, YAN Yuzhong, GUAN Baoshan, et al. A method to estimate the effective stimulation volume in shale gas reservoir based on material balance equations[J]. Petroleum Geology and Engineering, 2018, 32(6): 103-105. | |
[10] | 杜军社, 李培俊, 万文胜, 等. 试井资料在压裂效果评价中的应用[J]. 新疆石油地质, 2004, 25(4): 433-435. |
DU Junshe, LI Peijun, WAN Wensheng, et al. Application of well test data to evaluation of hydraulic fracturing performance[J]. Xinjiang Petroleum Geology, 2004, 25(4): 433-435. | |
[11] | 王军磊, 位云生, 程敏华, 等. 页岩气压裂水平井生产数据分析方法[J]. 重庆大学学报, 2014, 37(1): 102-109. |
WANG Junlei, WEI Yunsheng, CHENG Minhua, et al. A method of production data analysis for multi-fractured horizontal well in shale gas reservoir[J]. Journal of Chongqing University, 2014, 37(1): 102-109. | |
[12] | 武男, 陈东, 孙斌, 等. 基于分类方法的煤层气井压裂开发效果评价[J]. 煤炭学报, 2018, 43(6): 1694-1700. |
WU Nan, CHEN Dong, SUN Bin, et al. Evaluation on fracturing effect based on classification method[J]. Journal of China Coal Society, 2018, 43(6): 1694-1700. | |
[13] | 虞绍永. 页岩及致密油气藏工程方法[M]. 北京: 石油工业出版社, 2018. |
YU Shaoyong. Shale and tight reservoirs engineering[M]. Beijing: Petroleum Industry Press, 2018. | |
[14] | SONG B, ECONOMIDES C E. Rate-normalized pressure analysis for determination of shale gas well performance[C]// Paper SPE-144031-MS presented at the SPE North American Unconventional Gas Conference and Exhibition held in the Woodlands, Texas, USA, June 2011. |
[15] | YU Shaoyong, 刘玉慧. 页岩及致密地层油气井的生产特征及可采储量计算方法[J]. 油气藏评价与开发, 2021, 11(2): 12-19. |
YU Shaoyong, LIU Yuhui. Production performance and EUR forecast of wells producing from tight/shale reservoirs[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(2): 12-19. | |
[16] | El-BANBI A H, WATTENBARGER R A. Analysis of linear flow in gas well production[C]// Paper SPE-39972-MS presented at the 199S SPE Gas Technology Symposium held in Calgary, Alberta, Canada, March 1998. |
[17] | WATTENBARGER R A, El-BANBI A H, VILLEGAS M E, et al. Production analysis of linear flow into fractured tight gas wells[C]// Paper SPE-39931-MS presented at the SPE Rocky Mountain Regional/Low-Permeability Reservoirs Symposium and Exhibition held in Denver, Colorado, USA, April 1998. |
[18] | 刘能强. 实用现代试井解释方法(第五版)[M]. 北京: 石油工业出版社, 2008. |
LIU Nengqiang. Practical modern well test interpretation method[M]. 5th ed. Beijing: Petroleum Industry Press, 2008. | |
[19] | BLASINGAME T A, LEE W J. The variable-rate reservoir limits testing of gas wells[C]// Paper SPE-17708-MS Presented at the SPE Gas Technology Symposium, held in Dallas, TX, USA, June 1986. |
[1] | ZHANG Le, LIU Changlong, KOU Lei, CHEN Zheng, ZHANG Lu, XU Yuande, WANG Sheng, XUE Dedong. Research and application of intelligent polymer injection technology with cable control for high angle wells in offshore oilfield [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 133-137. |
[2] | SUN Yili. Mechanism of CO2 injection to improve the water injection capacity of low permeability reservoir in Shuanghe Oilfield in Henan [J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 55-63. |
[3] | LIAO Songlin,XIA Yang,CUI Yinan,LIU Fangzhi,CAO Shengjiang,TANG Yong. Variation of crude oil properties with multi-cycle CO2 huff-n-puff of horizontal wells in ultra-low permeability reservoir [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 784-793. |
[4] | GUO Deming,PAN Yi,SUN Yang,CHAO Zhongtang,LI Xiaonan,CHENG Shisheng. EOR mechanism of viscosity reducer-CO2 combined flooding in heavy oil reservoir with low permeability [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(5): 794-802. |
[5] | ZHAO Baoyin,ZHANG Ming. Application of facies-controlled prestack geostatistical inversion method in high quality reservoir prediction of low permeability reservoir: A case study of V Oil Formation of Es33 in Block A [J]. Petroleum Reservoir Evaluation and Development, 2022, 12(4): 666-676. |
[6] | JI Bingyu,HE Yingfu. Practice and understanding about CO2 flooding in low permeability oil reservoirs by Sinopec [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 805-811. |
[7] | WU Gongyi,ZHAO Ziping,WU Bo. CO2 flooding development models and economic benefit evaluation of different types of reservoirs in Subei basin [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(6): 864-870. |
[8] | WANG Rui. Fracturing well productivity of low permeability reservoir with taking the oil-water two phase flow into consideration [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 760-765. |
[9] | TANG Mingguang,LIU Qinghua,XUE Guoqing,ZHANG Jiqiang,LU Ruibin. Key parameter limits of water injection quality in offshore low permeability reservoir: A case study of Liushagang Formation in Weizhou 11-4N Oilfield [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5): 709-715. |
[10] | XIA Haibang,BAO Kai,WANG Rui. Pilot test of new infinite stage and full-bore sliding sleeve fracturing technology in shale gas wells [J]. Petroleum Reservoir Evaluation and Development, 2021, 11(3): 390-394. |
[11] | CHEN Xiang,ZHAO Liqiang,LI Xiaofan,HU Binghua,HU Zhongtai,YAO Fengsheng. Volumetric acid fracturing technology of offshore tight sandstone gas reservoirs [J]. Reservoir Evaluation and Development, 2020, 10(5): 120-126. |
[12] | JIN Zhongkang,WANG Zhilin,MAO Chaoqi. Dominant mechanism and application of CO2 immiscible flooding in M block with low permeability [J]. Reservoir Evaluation and Development, 2020, 10(3): 68-74. |
[13] | CAO Xulong, LYU Guangzhong, WANG Jie, ZHANG Dong, REN Min. Present situation and further research direction of CO2 flooding technology in Shengli Oilfield [J]. Reservoir Evaluation and Development, 2020, 10(3): 51-59. |
[14] | XIA Haibang. Research and application of soluble bridge plug in Nanchuan shale gas field [J]. Reservoir Evaluation and Development, 2019, 9(4): 79-82. |
[15] | Tang Yong,Liao Songlin,Lei Xinhui,Yu Guangming,Kang Xingmei. Study on improving the sweep efficiency of CO2 flooding in low permeability fractured reservoirs in Huang-3 block [J]. Reservoir Evaluation and Development, 2019, 9(3): 9-13. |
|