Petroleum Reservoir Evaluation and Development ›› 2024, Vol. 14 ›› Issue (3): 510-518.doi: 10.13809/j.cnki.cn32-1825/te.2024.03.021
• Comprehensive Application • Previous Articles
Received:
2024-02-22
Online:
2024-07-10
Published:
2024-06-26
CLC Number:
Xiao LIU. Comparison of seam network morphology in coal reservoirs under different fracturing scales: A case of Yanchuannan CBM Gas Field[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(3): 510-518.
Table 1
Comparison of two fracture monitoring methods"
类别 | 技术原理 | 监测目标 | 适用范围 | 数据处理 | 信号精度 | 野外施工 |
---|---|---|---|---|---|---|
微地震法 | 被动监测岩石破裂产生的能量震动信号 | 监测破裂范围内岩石破裂事件,与压裂液无直接关系 | 施工区域远离断层,顶底板地层稳定性好 | 根据多个检波器计算微弱信号,精度要求高 | 易受压裂现场噪声影响,数据信噪比低,事件拾取困难 | 监测区域2~3 km范围,地表监测需大量布设检波器,井中监测需要相邻井 |
广域电磁法 | 人工源连接井筒、主动激发监测压裂液入地产生的电性差异 | 压裂液波及范围内保持连通的有效裂缝 | 施工区域远离含水型断层,顶底板封隔性好、含水性弱 | 压前、压中、压后不同阶段会有动态的变化,依据原始数据和背景场做计算解释 | 依据现场背景值优选测量频率,信号强,数据达到毫伏级,抗干扰强 | 数据采集器在井段两侧500 m左右 |
Table 3
Fracturing test parameters of different scales"
类别 | 施工次序 | 支撑剂量/m3 | 液量/m3 | 排量/(m3/min) | 砂液比/% | 动态半长/m | 新增改造面积/m2 |
---|---|---|---|---|---|---|---|
低效老井多次中等规模压裂试验参数 | 第一次 | 150.7 | 2 176 | 11.7 | 6.9 | 256.1 | 11 432 |
第二次 | 151.7 | 1 955 | 12.0~11.4 | 7.8 | 296.1 | 9 859 | |
第三次 | 152.7 | 2 036 | 11.3 | 7.5 | 335.9 | 6 392 | |
第四次 | 136.3 | 2 001 | 12.0 | 6.8 | 362.2 | 4 467 | |
合 计 | 591.4 | 8 168 | 32 150 | ||||
新井多次大规模压裂试验参数 | 第一次 | 500.0 | 3 905 | 16.0~17.0 | 12.8 | 209.0 | 16 564 |
第二次 | 500.0 | 3 523 | 17.0~18.0 | 14.2 | 302.0 | 16 352 | |
第三次 | 500.0 | 3 439 | 17.0~18.0 | 14.5 | 322.0 | 7 370 | |
第四次 | 500.0 | 3 691 | 18.0 | 13.5 | 339.0 | 6 388 | |
第五次 | 500.0 | 3 575 | 18.0 | 14.0 | 345.0 | 3 628 | |
合 计 | 2 500.0 | 18 133 | 50 302 | ||||
新井单次超大规模压裂试验参数 | 第一次 | 1 000.0 | 6 539 | 18.0 | 15.3 | 389.0 | 40 572 |
[1] | 门相勇, 娄钰, 王一兵, 等. 中国煤层气产业“十三五”以来发展成效与建议[J]. 天然气工业, 2022, 42(6): 173-178. |
MEN Xiangyong, LOU Yu, WANG Yibing, et al. Development achievements of China’s CBM industry since the 13th Five-Year Plan and suggestions[J]. Natural Gas Industry, 2022, 42(6): 173-178. | |
[2] | 聂志宏, 时小松, 孙伟, 等. 大宁-吉县区块深层煤层气生产特征与开发技术对策[J]. 煤田地质与勘探, 2022, 50(3): 193-200. |
NIE Zhihong, SHI Xiaosong, SUN Wei, et al. Production characteristics of deep coalbed methane gas reservoirs in Daning-Jixian Block and its development technology countermeasures[J]. Coal Geology & Exploration, 2022, 50 (3): 193-200. | |
[3] |
郭绪杰, 支东明, 毛新军, 等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探, 2021, 26(6): 38-49.
doi: 10.3969/j.issn.1672-7703.2021.06.003 |
GUO Xujie, ZHI Dongming, MAO Xinjun, et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration, 2021, 26(6): 38-49.
doi: 10.3969/j.issn.1672-7703.2021.06.003 |
|
[4] | 姚红生, 陈贞龙, 何希鹏, 等. 深部煤层气“有效支撑”理念及创新实践——以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业, 2022, 42(6): 97-106. |
YAO Hongsheng, CHEN Zhenlong, HE Xipeng, et al. “Effective support” concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry, 2022, 42(6): 97-106. | |
[5] | 徐凤银, 王成旺, 熊先钺, 等. 深部(层)煤层气层成藏模式与关键技术对策——以鄂尔多斯盆地东缘为例[J]. 中国海上油气, 2022, 34(4): 30-42. |
XU Fengyin, WANG Chengwang, XIONG Xianyue, et al. Deep(layer) caolbed methane reservoir forming modes and key technical countermeasures: Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas, 2022, 34(4): 30-42. | |
[6] |
马新华. 非常规天然气“极限动用”开发理论与实践[J]. 石油勘探与开发, 2021, 48(2): 326-336.
doi: 10.11698/PED.2021.02.09 |
MA Xinhua. “Extreme utilization” development theory of unconventional natural gas[J]. Petroleum Exploration and Development, 2021, 48(2): 326-336.
doi: 10.11698/PED.2021.02.09 |
|
[7] | 胡秋嘉, 张聪, 贾慧敏, 等. 沁水盆地南部郑庄区块中北部煤层气直井增产新技术研究与应用[J]. 煤炭学报, 2024, 49(3): 1518-1529. |
HU Qiujia, ZHANG Cong, JIA Huimin, et al. Research and application of a new stimulation technology for deep coalbed methane vertical wells in central and Northern Zhengzhuang block, southern Qinshui Basin[J]. Journal of China Coal Society, 2024, 49(3): 1518-1529. | |
[8] | 张聪, 李梦溪, 胡秋嘉, 等. 沁水盆地南部中深部煤层气储层特征及开发技术对策[J]. 煤田地质与勘探, 2024, 52(2): 122-133. |
ZHANG Cong, LI Mengxi, HU Qiujia, et al. Moderately deep coalbed methane reservoirs in the southern Qinshui Basin: Characteristics and technical strategies for exploitation[J]. Coal Geology & Exploration, 2024, 52(2): 122-133. | |
[9] | 张建国, 刘忠, 姚红星, 等. 沁水煤层气田郑庄区块二次压裂增产技术研究[J]. 煤炭科学技术, 2016, 44(5): 59-63. |
ZHANG Jianguo, LIU Zhong, YAO Hongxing, et al. Study on production increased technology with secondary hydraulic fracturing in Zhengzhuang Block of Qinshui Coalbed Methane Field[J]. Coal Science and Technology, 2016, 44(5): 59-63. | |
[10] | 曹超. 煤层气重复压裂技术在沁水盆地南部的应用[J]. 中国煤层气, 2017, 14(4): 15-18. |
CAO Chao. Application of CBM repeated fracturing technology in Southern Qinshui Basin[J]. China Coalbed Methane, 2017, 14(4): 15-18. | |
[11] | 李乐忠. 低煤阶薄互层煤层气的成藏特征及开发技术——以澳大利亚苏拉特盆地为例[J]. 中国煤层气, 2016, 13(6): 15-19. |
LI Lezhong. Reservoir formation characteristics and development technology for low rank CBM with thin interbed—Taking Surat Basin in Australia as an example[J]. China Coalbed Methane, 2016, 13(6): 15-19. | |
[12] | 郑雪琳. 层间弱面影响下煤层水力裂缝扩展规律及煤岩裂缝导流能力研究[D]. 重庆: 重庆大学, 2021. |
ZHENG Xuelin. Study on hydraulic fracture propagation law of coal considering soft interlayer and coal fracture conductivity[D]. Chongqing: Chongqing University, 2021. | |
[13] | 薛海飞, 朱光辉, 张健, 等. 深部煤层气水力波及压裂工艺研究及应用[J]. 煤炭技术, 2019, 38(5): 81-84. |
XUE Haifei, ZHU Guanghui, ZHANG Jian, et al. Research and application of hydraulic networks fracturing technology in deep coalbed methane[J]. Coal Technology, 2019, 38(5): 81-84. | |
[14] | 洪扬, 吴涛. 玛北油田三叠系低渗砂砾岩储层压裂改造工艺技术[J]. 石油地质与工程, 2022, 36(3): 104-108. |
HONG Yang, WU Tao. Fracturing improvement technology of Triassic low peameability conglomerate reservoir in Mabei oilfield[J]. Petroleum Geology & Engineering, 2022, 36(3): 104-108. | |
[15] | 姚红生, 杨松, 刘晓, 等. 低效煤层气井多次压裂增效开发技术研究[J]. 煤炭科学技术, 2022, 50(9): 121-129. |
YAO Hongsheng, YANG Song, LIU Xiao, et al. Research on efficiency-enhancing development technology of multiple fracturing in low-efficiency CBM wells[J]. Coal Science and Technology, 2022, 50(9): 121-129. | |
[16] |
雷群, 胥云, 才博, 等. 页岩油气水平井压裂技术进展与展望[J]. 石油勘探与开发, 2022, 49(1): 166-172.
doi: 10.11698/PED.2022.01.15 |
LEI Qun, XU Yun, CAI Bo, et al. Progress and prospects of horizontal well fracturing technology for shale oil and gas reservoirs[J]. Petroleum Exploration and Development, 2022, 49(1): 166-172.
doi: 10.11698/PED.2022.01.15 |
|
[17] |
胥云, 雷群, 陈铭, 等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5): 874-887.
doi: 10.11698/PED.2018.05.14 |
XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5): 874-887.
doi: 10.11698/PED.2018.05.14 |
|
[18] | 刘小明. 大庆油田致密油水平井体积改造技术发展与建议[J]. 石油地质与工程, 2023, 37(4): 108-112. |
LIU Xiaoming. Development and suggestions for volume transformation of tight oil by horizontal wells in Daqing Oilfield[J]. Petroleum Geology & Engineering, 2023, 37(4): 108-112. | |
[19] | PERSON C M, GRIFFIN L, WRIGHT C, et al. Breaking up is hard to do: Creating hydraulic fracture complexity in the Bakken central basin[C]// Paper SPE-163827-MS presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas, USA, February 2013. |
[20] | 王世禄. 松辽盆地古龙页岩油水平井压裂施工参数优化[J]. 石油地质与工程, 2023, 37(5): 94-99. |
WANG Shilu. Optimization of fracturing construction parameters for Gulong shale oil with horizontal wells in Songliao Basin[J]. Petroleum Geology & Engineering, 2023, 37(5): 94-99. | |
[21] | FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[J]. Journal of Petroleum Technology, 2005, 57(3): 41-42. |
[22] |
雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 580-587.
doi: 10.11698/PED.2019.03.16 |
LEI Qun, GUAN Baoshan, CAI Bo, et al. Technological progress and prospects of reservoir stimulation[J]. Petroleum Exploration and Development, 2019, 46(3): 580-587.
doi: 10.11698/PED.2019.03.16 |
|
[23] | 沈骋, 郭兴午, 陈马林, 等. 深层页岩气水平井储层压裂改造技术[J]. 天然气工业, 2019, 39(10): 68-75. |
SHEN Cheng, GUO Xingwu, CHEN Malin, et al. Horizontal well fracturing stimulation technology for deep shale gas reservoirs[J]. Natural Gas Industry, 2019, 39(10): 68-75. | |
[24] | 杨松, 刘晓, 申建, 等. 延川南气田近薄层煤层气开发实践及其示范意义[J]. 天然气工业, 2023, 43(8): 90-97. |
YANG Song, LIU Xiao, SHEN Jian, et al. Development practice of near-thin bed CBM in the Yanchuannan gas field and its demonstration significance[J]. Natural Gas Industry, 2023, 43(8): 90-97. | |
[25] | 姚红生, 陈贞龙, 郭涛, 等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发, 2021, 11(3): 291-296. |
YAO Hongsheng, CHEN Zhenlong, GUO Tao, et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Reservoir Evaluation and Development, 2021, 11(3): 291-296. | |
[26] | 曹运兴, 石玢, 田林, 等. 低渗低压煤层水平井密集多簇压裂高效开发技术及应用[J]. 煤炭学报, 2020, 45(10): 3512-3521. |
CAO Yunxing, SHI Bin, TIAN Lin, et al. Development and application of dense multi-cluster fracturing in horizontal wells for low permeability and low pressure coal reservoir[J]. Journal of China Coal Society, 2020, 45(10): 3512-3521. | |
[27] | 徐凤银, 闫霞, 李曙光, 等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探, 2023, 51(1): 115-130. |
XU Fengyin, YAN Xia, LI Shuguang, et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration, 2023, 51(1): 115-130. | |
[28] | 余琪祥, 罗宇, 曹倩, 等. 准噶尔盆地东北缘深层煤层气勘探前景[J]. 天然气地球科学, 2023, 34(5): 888-899. |
YU Qixiang, LUO Yu, CAO Qian, et al. Exploration prospect of deep coalbed methane in the northeastern margin of Junggar Basin[J]. Natural Gas Geoscience, 2023, 34(5): 888-899. |
[1] | SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,LIU Shiqi,WANG Yuejiang. Deep coalbed methane resource and its exploration and development prospect in East China [J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4): 403-415. |
[2] | WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan [J]. Reservoir Evaluation and Development, 2020, 10(4): 1-11. |
[3] | HUANG Xiaozhen,GU Hongtao. Microseismic monitoring technology of shale gas block in the southern part of Pingqiao [J]. Reservoir Evaluation and Development, 2020, 10(1): 43-48. |
|